| DYNAMICS WORKSHEET Name | · - | Problem | |---|---|---------| | MODEL Make simplifying assumptions. | | | | VISUALIZE Draw a picture. Show important points in the motion. Establish a coordinate system. Define symbols. List knowns. Identify what you're trying to find. Known | Draw a motion diagram. Identify forces and interactions. Draw free-body diagrams. | | | Find | | | Start with Newton's first or second law in component form, adding other information as needed to solve the problem. # **ASSESS** | DYNAMICS WORKSHEET Name | Problem | |--|---| | MODEL Make simplifying assumptions. | | | VISUALIZE Draw a picture. Show important points in the motion. Establish a coordinate system. Define symbols. List knowns. Identify what you're trying to find. | Draw a motion diagram. Identify forces and interactions. Draw free-body diagrams. | | Known | Diaw nee-body diagrams. | | Eind | | | Find | | Start with Newton's first or second law in component form, adding other information as needed to solve the problem. ### **ASSESS** | | Problem | |---|---| | MODEL Make simplifying assumptions. | | | ISUALIZE Draw a before-and-after picture. Establish a coordinate system. Define symbols. Known | Draw a momentum bar chart. List knowns. Identify what you're trying to find. | | Find | + | | What is the system? What forces exert impulses on the system? Is the system's momentum conserved during part or If so, during which part? | all of the problem? | | | $P_{ix} + J_x = P_{fx}$ | Start with conservation of momentum or the impulse-momentum theorem, using Newton's laws or kinematics as needed. | MOMENTUM WORKSHEET Name | | Problem | | | | | | | |---|--|--|---------------------|---|--------------------|---|--|--| | MODEL Make simplifying assumptions. | | | | | | | | | | Dian a botoro and arter protato. | Draw a momenList knowns. Id | ntum bar chart.
Jentify what you're trying to find. | 1 | | | | | | | | Find | | + | | | | | | | | What is the system? What forces exert impulses on the system? Is the system's momentum conserved during part or all If so, during which part? | of the problem? | 0 | | + | | = | | | | so, during which part? | · | - |
P _{ix} | + |
J _x | = | | | Start with conservation of momentum or the impulse-momentum theorem, using Newton's laws or kinematics as needed. # **ENERGY WORKSHEET** Name ______ Problem _____ MODEL Make simplifying assumptions. ### **VISUALIZE** - Draw a before-and-after picture. - Establish a coordinate system. Define symbols. - · Draw an energy bar chart. - · List knowns. Identify what you're trying to find. #### Known Find What is the system? Potential energies? Nonconservative forces? External forces? Is mechanical energy conserved? | 1 | | | | | | | | | | | | |---|---------|---|---------|---|-----------|---|-------------|---|----------|---|-----------------| | + | 0 | | + | | + | | = | | + | | + | _ | - | | | | | K_{i} | + | U_{i} | + | W_{crt} | = | $K_{\rm f}$ | + | U, | + | ΔE_{rb} | ### **SOLVE** Start with conservation of energy, adding other information and techniques as needed to solve the problem. | ENERGY WORKSHEET Name | Problem | | |--|--|-------------| | MODEL Make simplifying assumptions. | | | | VISUALIZE • Draw a before-and-after picture. • Establish a coordinate system. Define symbols. Known | Draw an energy bar chart. List knowns. Identify what you're trying to find. | | | Find | | . - | | | + | . | | What is the system? | | · | Potential energies? External forces? Nonconservative forces? Is mechanical energy conserved? Start with conservation of energy, adding other information and techniques as needed to solve the problem.