DYNAMICS WORKSHEET Name	· -	Problem
MODEL Make simplifying assumptions.		
 VISUALIZE Draw a picture. Show important points in the motion. Establish a coordinate system. Define symbols. List knowns. Identify what you're trying to find. Known 	 Draw a motion diagram. Identify forces and interactions. Draw free-body diagrams. 	
Find		

Start with Newton's first or second law in component form, adding other information as needed to solve the problem.

ASSESS

DYNAMICS WORKSHEET Name	Problem
MODEL Make simplifying assumptions.	
 VISUALIZE Draw a picture. Show important points in the motion. Establish a coordinate system. Define symbols. List knowns. Identify what you're trying to find. 	 Draw a motion diagram. Identify forces and interactions. Draw free-body diagrams.
Known	Diaw nee-body diagrams.
Eind	
Find	

Start with Newton's first or second law in component form, adding other information as needed to solve the problem.

ASSESS

	Problem
MODEL Make simplifying assumptions.	
 ISUALIZE Draw a before-and-after picture. Establish a coordinate system. Define symbols. Known 	 Draw a momentum bar chart. List knowns. Identify what you're trying to find.
Find	+
 What is the system? What forces exert impulses on the system? Is the system's momentum conserved during part or If so, during which part? 	all of the problem?
	$P_{ix} + J_x = P_{fx}$

Start with conservation of momentum or the impulse-momentum theorem, using Newton's laws or kinematics as needed.

MOMENTUM WORKSHEET Name		Problem						
MODEL Make simplifying assumptions.								
Dian a botoro and arter protato.	Draw a momenList knowns. Id	ntum bar chart. Jentify what you're trying to find.						
		1						
Find		+						
 What is the system? What forces exert impulses on the system? Is the system's momentum conserved during part or all If so, during which part? 	of the problem?	0		+		=		
so, during which part?	·	-	 P _{ix}	+	 J _x	=		

Start with conservation of momentum or the impulse-momentum theorem, using Newton's laws or kinematics as needed.

ENERGY WORKSHEET

Name ______ Problem _____

MODEL Make simplifying assumptions.

VISUALIZE

- Draw a before-and-after picture.
- Establish a coordinate system. Define symbols.
- · Draw an energy bar chart.
- · List knowns. Identify what you're trying to find.

Known

Find

What is the system?

Potential energies?

Nonconservative forces?

External forces?

Is mechanical energy conserved?

1											
+											
0		+		+		=		+		+	
_											
									-		
	K_{i}	+	U_{i}	+	W_{crt}	=	$K_{\rm f}$	+	U,	+	ΔE_{rb}

SOLVE

Start with conservation of energy, adding other information and techniques as needed to solve the problem.

ENERGY WORKSHEET Name	Problem	
MODEL Make simplifying assumptions.		
VISUALIZE • Draw a before-and-after picture. • Establish a coordinate system. Define symbols. Known	 Draw an energy bar chart. List knowns. Identify what you're trying to find. 	
Find		. -
	+	.
What is the system?		·

Potential energies?

External forces?

Nonconservative forces?

Is mechanical energy conserved?

Start with conservation of energy, adding other information and techniques as needed to solve the problem.