PHYS 1010 6.0: CLASS TEST 2
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] When a fighter pilot makes a very quick turn he can pass out due to the centripetal acceleration associated with the turn. This happens typically when this acceleration reaches $8 g$. Consider a pilot flying at $2200 \mathrm{~km} / \mathrm{h}\left(2.2 \times 10^{3} \mathrm{~km} / \mathrm{h}\right)$ steering into such a turn. What is the minimum radius he needs to follow to avoid a black-out?

$$
\begin{equation*}
\text { Circular (uniform) motion: } \quad a_{c p}=\frac{v^{2}}{r} \quad \therefore \quad r=\frac{v^{2}}{a_{c p}} \tag{1}
\end{equation*}
$$

$\left.\begin{array}{ll}a_{c p} \text { should not exceed } 8 g ; \quad r_{c}=\frac{v^{2}}{8 g} \\ r>r_{c} \text { guarantees } & a_{c p}<8 g\end{array}\right\}$ (1) $\begin{aligned} & v= 2.2 \times 10^{3} \frac{\mathrm{~km}}{\mathrm{~h}}=2.2 \times 10^{3} \times \frac{10^{3} \mathrm{~m}}{3.6 \times 10^{3} \mathrm{~s}}=0.611 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}} \\ & \mathrm{C}^{2}=\frac{0.373 \times 10^{6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{2} \\ & 2 \text { part marks for getting } \\ & \text { this correct }\end{aligned} \quad \begin{aligned} r_{c} & =4.76 \times 10^{3} \mathrm{~m} \\ & =4.8 \times 10^{3} \mathrm{~m} \quad \begin{array}{l}\text { (2 significant } \\ \text { digits) }\end{array}\end{aligned}$

The smallest turning radius equals 4.8 km
2) [5] A roller coaster track as shown in the figure is designed such that a car travels upside down when at the top. The track has a radius of 25 m . What is the minimum speed the car has to have at the top to avoid falling out of the track? Start with a free-body diagram, and explain your steps.

(3)

$$
\begin{align*}
& \frac{m v_{\text {min }}^{2}}{R}=m g \tag{1}\\
& v_{\text {min }}= v_{\text {min }}=\sqrt{R g} \\
&\left(\rightarrow 56 \frac{\mathrm{~km}}{\mathrm{~h}}\right) \tag{2}
\end{align*}
$$

The car's speed at the top (!) has to exceed $56 \mathrm{~km} / \mathrm{h}$ in order not to fall out of the track.
3) [5] Three rocks are placed at the following coordinates in the $x-y$ plane: $m_{1}=10 \mathrm{~kg}$ at $P_{1}=(1.0,2.0) \mathrm{m}, m_{2}=20 \mathrm{~kg}$ at $P_{2}=(2.0,3.0) \mathrm{m}$, and $m_{3}=30 \mathrm{~kg}$ at $P_{3}=(2.0,4.0) \mathrm{m}$. Calculate the gravitational attraction that m_{2} and m_{3} exert on m_{1}. Start with a drawing indicating the positions of the masses and the force vectors acting on m_{1}. Express the net force on m_{1} as Cartesian components (using $\hat{\imath}$ and $\hat{\jmath}$).

$$
\left.\begin{array}{l}
\vec{F}_{\text {2 on } 1}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12} \\
\text { where } \vec{r}_{12}=\vec{r}_{1}-\vec{r}_{2}
\end{array}\right\}
$$

$$
=\frac{6.67 \times 10^{-11} \times 10 \times 20}{2 \times 1.414}(\hat{\imath}+\hat{\jmath}) \quad N
$$

$$
\begin{equation*}
=\left(4.72 \times 10^{-9} \hat{i}+4.72 \times 10^{-9} \hat{\jmath}\right) N \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\vec{r}_{13} & =\vec{r}_{1}-\vec{r}_{3}=-1.0 \hat{\imath}-2.0 \hat{\jmath} ; r_{13}^{2}=1+4=5 \\
\vec{F}_{30 n} & =-\frac{G m_{1} m_{3}}{r_{13}{ }^{2}} \hat{r}_{13} \\
& =\frac{6.67 \times 10^{-11} \times 10 \times 30}{5 \sqrt{5}}(\hat{\imath}+2 \hat{\jmath}) \mathrm{N} \\
& =\left(1.79 \times 10^{-9} \hat{\imath}+3.58 \times 10^{-9} \hat{\jmath}\right) \mathrm{N} \tag{1}\\
\vec{F}_{\text {net on 1 }} & =\left((4.72+1.79) \times 10^{-9} \hat{\imath}+(4.72+3.58) \times 10^{-9} \hat{\jmath}\right) \mathrm{N} \\
& =(6.51 \hat{\imath}+8.30 \hat{\jmath}){ }_{n} \mathrm{~N} \quad\left(\text { or } 10^{-9} \mathrm{~N}\right) \\
& =(6.5 \hat{\imath}+8.3 \hat{\jmath}) \times 10^{-9} \mathrm{~N} \tag{1}
\end{align*}
$$

4) A car is pushed along a long road that is straight, flat, and parallel to the x direction. The horizontal force on the car varies with x as shown in the figure.
(a) [4] What is the work done on the car by this force?
(b) [1] What is the work done by gravity on the car? (explain!)

a) $W=\underbrace{\int_{x_{i}}^{x_{f}} F d x}_{\text {area law }} \quad\left(F=F_{x}(x)\right)$
area can be obtained from a triangle + rectangle: $\left(W=W_{T}+W_{R}\right)$

$$
\begin{align*}
W_{T} & =\frac{1}{2}\left(x_{f}-x_{i}\right)\left(F_{\max }-F_{\min }\right) \\
& =\frac{1}{2}(30) \times 200 \quad \mathrm{Nm}=3000 \mathrm{Nm} \tag{1}\\
W_{R} & =\left(x_{f}-x_{i}\right) \cdot F_{\min }=30 \cdot 50 \mathrm{Nm}=1500 \mathrm{Nm}
\end{align*}
$$

$$
\begin{aligned}
W_{T}+W_{R}=W & =4500 \mathrm{Nm} \quad(=4500 \mathrm{~J}) \\
& =4.5 \times 10^{3} \mathrm{~J}(1) \text { (indicates } \\
& \\
&
\end{aligned}
$$

b) Gravity acts at a right angle to the displacement

No contribution to the work
0.5

$$
(W=F \Delta \vec{r} \cos \alpha \quad \text { where } \alpha=\Varangle \vec{F}, \Delta \overrightarrow{\Delta r})
$$

FORMULA SHEET
$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg} .}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}}$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?
uniform circular m.: $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta \quad$ For $F(x)$ the work is given as area under the F_{x} vs x curve.

