PHYS 1010 6.0: CLASS TEST 2 on Oct. 26, 2012
Time: 50 minutes; Calculators \& formulae provided at the end = only aid; ask no questions!

1) [5] A 2.0 kg parcel is launched up a ramp which ends in a horizontal surface with known
(6.5) initial speed m / s. The ramp makes a 30 -degree angle with the horizontal and is 28 m 1.5 long. The coefficient of kinetic friction between parcel and ramp is given as 0.2 . Calculate the velocity vector of the parcel as it arrives at the top of the ramp (it will launch into the air at this point!). Begin your solution with a complete free-body diagram for the parcel on the ramp.

Now use either a work calculation, or const.- a kinematics

$$
\begin{aligned}
& \text { (A) } W=F_{S} \Delta S=-19.8 \mathrm{~J} \\
& k_{i}=\frac{1}{2} m v_{i}^{2}=1.0 \cdot 6 . \mathrm{s}^{2}=42.25 \mathrm{~J} \\
& 0.5) \rightarrow K_{f}=\frac{1}{2} m v_{f}^{2}=K_{i}+W=22.45 \mathrm{~J} \\
& \therefore v_{f}=4.74 \frac{m}{s} \quad \begin{array}{l}
\vec{v}_{f}=4.1 \hat{\imath}+2.4 \hat{\jmath}\binom{m}{\bar{s}} \\
v_{f} \cos 30^{\circ} \\
v_{s}
\end{array} \\
& \vec{v}_{f}=v_{f} \cos \alpha \hat{\imath}+v_{f} \sin \alpha \hat{\jmath}=4.74 \cdot 0.866 \hat{\imath}+4.74 \cdot 0.5 \hat{\jmath} \\
& =4.1 \hat{\imath}+2.4 \hat{\jmath}(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

alternative: (B) $0.5 v_{f}^{2}=v_{i}^{2}+2 a \Delta S \Rightarrow$ constant acceleration kinematics

$$
0.5 v_{f}^{2}=42.25-2.6 .60 \cdot 1.5=22.45 \frac{m^{2}}{s^{2}}
$$

() then the same as above. (1) for final answer
2) [5] A 3.0 kg parcel arrives at the top of a ramp which makes a 45-degree angle with the horizontal with a speed of $2.4 \mathrm{~m} / \mathrm{s}$. It lands some distance d away on the horizontal surface. Calculate this distance while neglecting air drag. Do not use a (memorized) formula for the range, but derive your result for d from the kinematic equations given in the formula sheet. Provide a free-body diagram for the parcel while it is airborne.

$$
\begin{align*}
\vec{v}_{0} & =v_{0} \cos 45^{\circ} \hat{\imath}+v_{0} \sin 45^{\circ} \hat{\jmath} \\
& =v_{0}\left(\frac{\hat{\imath}}{\sqrt{2}}+\frac{\hat{\jmath}}{\sqrt{2}}\right) \tag{1}
\end{align*}
$$

$$
v_{0 x}=1.70 \mathrm{~m} / \mathrm{s}
$$

$$
v_{0 y}=1.70 \mathrm{~m} / \mathrm{s}
$$

$$
\left.\begin{array}{l}
v_{x}(t)=v_{0 x}, \quad x(t)=x_{0}+v_{0 x} t \\
v_{y}(t)=v_{0 y}-g t, \quad y(t)=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2} \tag{1}
\end{array}\right\}
$$

use $x_{0}=0$ and $t=0$ for the start of the "flight".

$$
\begin{align*}
x_{\text {fin }}=d & =v_{0 x} t_{f} \quad \text { time of flight: } \quad t_{f}=\frac{d}{v_{0 x}} \tag{1}\\
y\left(t_{f}\right)=y_{0} & \Rightarrow v_{0 y} t_{f}-\frac{1}{2} g t_{f}^{2}=0 \tag{1}\\
& \therefore \quad t_{f}\left(v_{0 y}-\frac{1}{2} g t_{f}\right)=0
\end{align*}
$$

We are interested in ()$=0$, since $t_{f}=0$ is the start of the fight

$$
\begin{equation*}
\therefore 2 v_{0 y}-g t_{f}=0 \quad \therefore \quad t_{f}=\frac{2 v_{0 y}}{g} \tag{2}
\end{equation*}
$$

(1) = (2) $\uparrow \frac{d}{v_{0 x}}=\frac{2 v_{0 y}}{g} \quad \therefore \quad d=\frac{2 v_{0 y} v_{0 x}}{g}$

$$
\begin{equation*}
d=\frac{2 v_{0}^{2} \cos 45^{\circ} \sin 45^{\circ}}{g}=\frac{v_{0}^{2}}{g} \rightarrow d=0.59 \mathrm{~m} \tag{1}
\end{equation*}
$$

3) An astronaut with mass $m=80 \mathrm{~kg}$ (including her gear) steps on a spring scale on the equator of planet X , and finds a reading of 90 kg . Mission control estimated that the planet has a mass of $M=3.5 \times 10^{24} \mathrm{~kg}$, and a radius of $4,500 \mathrm{~km}$, but was unable to provide the period T at which the planet is spinning about its north-south axis.
a) [2] Calculate the g-value for this planet, and determine what the reading on the spring scale should be if the planet wasn't spinning. Hint: a spring scale measures the normal force, and is calibrated on earth based on $N=m g_{e}$, where $g_{e}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{align*}
& g_{x}=\frac{G M}{R^{2}}=\frac{6.67 \cdot 10^{-11} \cdot 3.5 \cdot 10^{24}}{4.5^{2} \cdot\left(10^{6}\right)^{2}}=11.5 \frac{m}{s^{2}} \tag{0}\\
& N=m g_{x}=922 \mathrm{~N}, \text { but } m_{\text {display }}=\frac{\mathrm{N}}{g_{e}}=94.1 \mathrm{~kg}
\end{align*}
$$

b) [3] Determine what the astronaut finds T to be on the basis of her measurement. Begin with a free-body diagram.
top view

$$
\left(\frac{2 \pi}{T}\right)^{2}=\frac{g_{x}}{R}-\frac{N}{m R}
$$

$$
\begin{align*}
\therefore \quad \frac{1}{T^{2}} & =\frac{1}{4 \pi^{2} R}\left(g_{x}-\frac{N}{m}\right)=\frac{1}{4 \pi^{2} R}(\underbrace{11.5-\frac{90 \cdot 9.8}{80}}_{0.475}) \\
\frac{1}{T^{2}} & =\frac{0.475}{4 \pi^{2} 4.5 \times 10^{6}}=2.68 \times 10^{-9} \\
T^{2} & =0.373 \times 10^{9}=3.73 \times 10^{8} \\
T & =1.9 \times 10^{4} \mathrm{~s} \tag{1}
\end{align*}
$$

4) [5] Derive the result for the (circular) geosynchronous satellite orbit radius. Begin with a free-body diagram for the satellite over the earth's equator. Comment on how accurate this result may be. The formula sheet lists most of the required data. Hint: a geosynchronous satellite does not move with respect to a fixed location on the equator, which means it can be used for direct-line communication all the time.

$$
\begin{aligned}
& T=24^{h}=24 \times 3,600 \mathrm{~s} \\
& a_{c_{p}}=R_{s} \omega^{2} \text { where } \omega=\frac{2 \pi}{T} \\
& \text { (Synchronous) } \\
& m_{S} a_{c_{p}}=\frac{G M_{E}^{m_{S}}}{R_{S}^{2}}(1)\binom{2^{n d}}{1 a n} \\
& \therefore \quad R_{S}\left(\frac{2 \pi}{T}\right)^{2}=\frac{G M_{E}}{R_{S}^{2}} \\
& R_{S}^{3}=\frac{G M_{E} T^{2}}{4 \pi^{2}} \\
& R_{S}=\sqrt[3]{\frac{G M_{E} T^{2}}{4 \pi^{2}}} \\
& R_{S}=\sqrt[3]{\frac{6.67 \times 10^{-11} \cdot 6.0 \times 10^{24} \cdot(24 \cdot 3,600)^{2}}{4 \pi^{2}}} \\
& =4.2 \times 10^{7} \mathrm{~m}=42,000 \mathrm{~km} \approx 6.6 \mathrm{RE}
\end{aligned}
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{E}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}} ; \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v} ;$ linear: $F_{\mathrm{d}}=d v ;$ quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?
uniform circular m.: $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g y$. $K=\frac{m}{2} v^{2}$

