PHYS 1010 6.0: CLASS TEST 3 on Dec. 2, 2011
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] A slowly moving car (mass 1200 kg , speed $25 \mathrm{~km} / \mathrm{h}$ is hit directly from behind by an SUV (mass 2700 kg , speed $75 \mathrm{~km} / \mathrm{h}$). The two vehicles stick together and emerge with some velocity right after the collision (before braking sets in; assume one-dimensional motion). Find this velocity. Calculate how much kinetic energy is lost in the collision. Assuming a collision time of 0.1 seconds find the acceleration for both vehicles.

- Sticky collision is totally inelastic
- total momentum is conserved
car: $m=1200 \mathrm{~kg}, v=25$
$\begin{cases}P_{\text {before }}^{\text {before }}=m v+M V \quad & \text { (along } x) \\ \text { same dire }\end{cases}$
same direction
(5)

$$
\begin{aligned}
P_{\text {tot }}=1200.25+2700.75 & =2.325 \times 10^{5} \mathrm{~kg} \frac{\mathrm{~km}}{\mathrm{~h}} \\
& =6.46 \times 10^{4} \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { (SI) }
\end{aligned}
$$

(5) $P_{\text {tot }}^{\text {after }}=(m+M) V_{\text {gi }}=3900 \cdot V_{\text {gin }}=P_{\text {tot }}^{\text {before }}$ (momentum conservation) conservation)

$$
\left\{\begin{align*}
& K E^{\text {bethere }}=\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}=600 \cdot\left(\frac{25}{3.6}\right)^{2}+\frac{2700}{2}\left(\frac{75}{3.6}\right)^{2} \\
&=2.89 \times 10^{4}+5.86 \times 10^{5}=6.15 \times 10^{5} \mathrm{~J}=615 \mathrm{~kJ} \tag{1}\\
&(=6.1 \\
& K E^{\text {alter }}=\frac{1}{2} \cdot 3900 \cdot(16.6)^{2} \mathrm{~J}=5.37 \times 10^{5} \mathrm{~J}=537 \mathrm{~kJ} \\
& K E^{\text {loss }}=K E^{a l t e r}-K E^{\text {before }}=7.8 \times 10^{4} \mathrm{~J} \quad(=78 \mathrm{~kJ}) \tag{0.5}\\
& a=\frac{\Delta v}{\Delta t}: \quad a_{m}=\frac{16.6-6.9}{0.1}=96 \mathrm{~m} / \mathrm{s}^{2} 0.7 \\
& \sim 10 \mathrm{~g}
\end{align*}\right.
$$

Note $M a_{M} \approx-m a_{m}$ (Newton's $3^{\text {rd law }}$ relates $F_{\text {mouM }}$ to $F_{\text {Moum }}$)
2) [5] Two pucks of equal mass approach each other to collide at $x=0, y=0$. Puck 1 has a speed of $6 \mathrm{~m} / \mathrm{s}$, and moves along the x-axis (at negative x before the collision). Puck 2 has a velocity of $(3 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$ (i.e., approaches from negative x and y). Provide a drawing which represents the system before the collision, and indicate by an arrow the total momentum vector together with the momentum vectors for both pucks. The puck sides were coated with some super-glue and stick together after the collision. What is the velocity vector for the combined system expressed by (x, y) components? What is this vector expressed through magnitude and direction angle?
equal mass: momentum and velorty vectors scale equally

$$
\vec{p}_{\text {tot }}=m\left(\vec{v}_{1}+\vec{v}_{2}\right)
$$

(length of $\vec{v}_{2}: \sqrt{9+9}$

$$
=\sqrt{18} \simeq 4.2
$$

After the collision: $\vec{P}_{\text {tot }}=2 m \vec{v}_{\text {fin }} \quad \therefore \vec{v}_{2}=3 \frac{m}{s} \hat{\imath}+3 \frac{m}{s} \hat{\psi}$ fin $=\frac{1}{2}\left(\vec{v}_{1}+\vec{v}_{2}\right)$

$$
\stackrel{v}{\text { comb }}=(6+3) \hat{\imath}+3 \hat{\jmath} \frac{m}{s}
$$

$$
=9 \hat{\imath}+3 \hat{\jmath} \frac{m}{s}
$$

$$
\vec{v}_{\text {fin }}=\frac{1}{2} \vec{v}_{\text {comb }}=4.5 \hat{\imath}+1.5 \hat{\jmath} \frac{m}{s}
$$

$$
\text { SI: } v_{\text {fin }}=\frac{1}{2} \sqrt{81+9}=\frac{1}{2} \sqrt{90}=4.75 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
g=\tan ^{-1} \frac{v_{y}}{v_{x}}=\tan ^{-1} \frac{3}{9}=18.4^{\circ}=0.32 \mathrm{rad}
$$

3) [5] You are pushing a crate (cube-shaped box, mass 250 kg evenly distributed, edge length 0.8 m) with constant speed over a smooth floor ($\mu_{\mathrm{k}}=0.2$). Your hands apply the required force at the top edge of the back of the crate. Suddenly the crate hits an obstacle (floor carpet), the front edge of the crate jams at the bottom. Calculate whether the crate will tip over or not (using the front bottom edge as a pivot point). Start with a drawing in which you show the forces that apply (and where they apply) assuming that the crate is about to tip, i.e., the contact with the floor is just at the pivot. Make sure that the magnitudes of the forces are reasonable relative to each other!

translational equilibrium:

$$
\begin{aligned}
& \hat{\imath}: F_{\text {push }}+F_{S}=0 \\
& \hat{\jmath}:-m g+N=0.0
\end{aligned}
$$

rotation about pivot:
a point of tipping: \vec{N} applies at P (no torque) 0.5
\vec{F}_{S} : no torque about P
$\tau_{\text {grad }}$ is out of plane (by RH rule)
$\rightarrow C C W$ rotation
Tpust is into plane $\rightarrow C W$ rotation

$$
\begin{aligned}
F_{\text {prom }} & =\mu_{k} N=\mu_{k} m g=0.2 \cdot 250 \cdot 9.8 N=490 N \\
m g & =2450 \mathrm{~N} \\
\left|\tau_{\text {grave }}\right| & =m g \cdot \frac{L \sqrt{2}}{2} \cdot|\sin \varphi| ;\left|\tau_{\text {push }}\right|=F_{\text {push }} L \sqrt{2}|\sin \varphi|
\end{aligned}
$$

clearly $\left|\tau_{\text {push }}\right| \ll \tau_{\text {grail }} \mid \therefore$ crate wait tip.
4) [5] A large cylinder (radius R_{1}, small length L, mass M) rolls on a flat surface, since attached to it is another cylinder (radius $R_{2}=R_{1} / 2$, same length L, mass $M / 4$), and a mass m suspended freely from a rope falls under gravity and is unwinding rope at radius R_{2}. Formulate Newton's second law for: (i) mass m, (ii) the rotation of the combined two cylinders about their centre of mass, (iii) the linear motion of the centre of mass for the combined cylinders. Keeping in mind this last equation draw the friction force f_{s} (show where it applies and its correct direction). The inertia for a disk about the CM is given as $I_{d}=M R^{2} / 2$.
(i) mass m :

$$
\begin{equation*}
m a_{y}=m g-T \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& I_{C M}=\frac{1}{2} M R_{1}^{2}+\frac{1}{2} \frac{M}{4} R_{2}^{2} \\
&=\frac{17}{8} M R_{2}^{2} \\
& I_{C M} \alpha=T R_{2}-f_{S} R_{1} \tag{1}
\end{align*}
$$

$$
\text { (iii) }(M+\frac{M}{4} \underbrace{(+m)}_{\text {negligible for } m \ll M}) a_{C M}=f_{S}
$$

f_{s} is to the right! f_{s}-torque opposes the torque from tension T

Note: this can be solved, since:

$$
a_{y}=R_{2} \alpha \quad \text { and } \quad a_{c M}=R_{1} \alpha=2 R_{2} \alpha=2 a_{y}
$$

- The linear motion of m has net force $m g$
- The inertia is complicated, but for $m \ll M$
we find from the 3 equations

$$
\left.\frac{57}{8} \mathrm{M} \right\rvert\, a_{y}=m g
$$

eltechive inertia for vertical motion caused by mg
Using the rolling contact point as pivot, and ignoring $m \angle C M$ terms: $I_{p}=\frac{574}{8} M R_{2}^{2} ; \quad$ solution follows from

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{E}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}} ; \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?
uniform circular m.: $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\text {in }}+K_{2}^{\text {in }}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$

