Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Amir loves his skateboard. He checked his weight before going for a ride, and found his mass to be 53 kg . His skateboard has a mass of 2.5 kg . He is going on a flat park trail at a speed of $25 \mathrm{~km} / \mathrm{h}$, when a small $5.5-\mathrm{kg}$ dog comes running from behind at $35 \mathrm{~km} / \mathrm{h}$ and jumps to join him on his board. How fast are they going together? Calculate the total mechanical energy (in SI units) before and after the jump and comment whether it is conserved in the process.
total linear momentum is conserved during this (inelastic) collision :

$$
\begin{aligned}
& m_{1}=m_{A}+m_{S B}=55.5 \mathrm{~kg} \\
& m_{2}=m_{D o g}=5.5 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{array}{r}
m_{1} \cdot 25+m_{2} \cdot 35=\left(m_{1}+m_{2}\right) V_{\text {fin }}(1)\left(V_{\text {fin }} \text { in } \mathrm{km} / \mathrm{h}\right) \\
V_{\text {fin }}=25.9 \mathrm{~km} / \mathrm{h} \quad(=26 \mathrm{~km} / \mathrm{h} \text { to } 2 \text { sig.d.j }) \tag{1}
\end{array}
$$

$$
\begin{aligned}
K E_{\text {before }} & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
K E_{\text {alter }} & =\frac{1}{2}\left(m_{1}+m_{2}\right) V_{\text {fin }}^{2} \\
K E_{\text {before }} & =\frac{1}{2}\left[55.5\left(\frac{25}{3.6}\right)^{2}+5.5\left(\frac{35}{3.6}\right)^{2}\right] \\
0.5 & =1598 \mathrm{~J}=1600 \mathrm{~J}(3 \text { disib) } \\
K E_{\text {alter }} & =\frac{1}{2}\left[61.0\left(\frac{25.9}{3.6}\right)^{2}\right] \\
0.5 & =1579 \mathrm{~J}=1580 \mathrm{~J}(3 \mathrm{dish})
\end{aligned}
$$

(1) $K E_{\text {alter }}<K E_{\text {before }} \rightarrow$ small inelasticity
(to 2 sig digits the every is the same, ie., inelasticity is hard to measure)
2) [5] You are given three masses and their locations in a plane: $m_{1}=3.4 \mathrm{~kg}$ located at $(x, y)=(2,3) \mathrm{m}, m_{2}=4.8 \mathrm{~kg}$ located at $(x, y)=(-2,1) \mathrm{m}$, and $m_{3}=2.2 \mathrm{~kg}$ located at $(x, y)=(-1,-3) \mathrm{m}$. Mark their positions on a graph. Calculate the location of the centre of mass, and show where it is on the graph. Suppose the set-up of masses is transferred onto a 'massless' turntable with the given coordinate origin at the centre, i.e., as pivot point. What is the rotational inertia? Would it be the same as the inertia about the centre of mass?

	x_{i}	y_{i}	r_{i}^{2}	m_{i}
m_{1}	2	3	13	3.4
m_{2}	-2	1	5	4.8
m_{3}	-1	-3	10	2.2

$$
\begin{aligned}
& M=10.4 \mathrm{~kg} \\
& M X_{C M}=\sum m_{i} x_{i}=-5 \mathrm{mkg} \\
& M Y_{\mathrm{cm}}=\sum m_{i} y_{i}=8.4 \mathrm{mkg} \\
& \vec{R}_{C M}=(-0.48,0.81)=-0.48 \hat{\imath}+0.81 \hat{\jmath} \mathrm{~m} \\
& I_{0}=\sum m_{i} r_{i}^{2}=3.4 \cdot 13+4.8 \cdot 5+2.2 \cdot 10 \\
& \text { (1.5) } \xrightarrow{\uparrow}=90.2 \mathrm{kgm}^{2}
\end{aligned}
$$

3) [5] A cylindrical spool of mass $m=0 \mathrm{~kg}$ has a diameter of 20 cm . It has a strong thread wound around it many times (the turns side-by-side, so the radius doesn't change), such that the end emerges at the top, as shown. A tension force of 5.0 N is applied to drag the spool up a 30 -degree incline. Use the plot to indicate all forces that apply. Then draw a free-body diagram for the motion of the CM. Formulate the equations of motion for the centre of mass, and for the rotation of the spool. Note that the inertia about the CM is given as $0.5 M R^{2}$, and about a point on the rim it is $1.5 M R^{2}$. What is the acceleration up the incline?

$$
\begin{aligned}
& M a_{C M}= T-M g_{11}-f_{S} \quad \text { up incline } \\
&=T-M g \sin 30^{\circ}-f_{S} \\
&=T-M g \frac{1}{2}-f_{S} \\
&(1) \\
& \text { (1) }\left\{\begin{aligned}
I_{P} \alpha & =2 T R-M g g_{11} R \quad \text { direction } \\
1.5 M R^{2} \alpha & =(2 T-M g / 2) R \\
O R: I_{C M} \alpha & =f_{S} R+T R \\
0.5 M R^{2} \alpha & =f_{S} R+T R
\end{aligned}\right. \\
& \text { use } \alpha=\frac{a_{C M}}{R} \quad \begin{array}{l}
1.5 M a_{C M}=2 T-\frac{M g}{2} \\
\text { tainde by } R \quad 1.5 a_{C M}=10.0-\frac{1.09 .8}{2} \\
a_{C M}=3.4 \mathrm{~m} / \mathrm{s}^{2}(1)
\end{array}
\end{aligned}
$$

4) [5] The drawing shows a planet m_{1} under the gravitational influence of a star (M at the origin) and another (hypothetical) planet $m_{2}=m_{1}$ on the same circular orbit, but advanced by 90 degrees. Calculate the angular momentum vector for planet m_{1} with respect to the star. Calculate the gravitational torque vector about the origin planet m_{2} exerts on planet m_{1}. Is the angular momentum of m_{1} with respect to the star conserved? Explain.

$$
\vec{L}_{0}=\vec{R} \times \vec{p}=R m_{1} v \hat{k}
$$

(1) (magnitude $m, R v$; out of plane)
(1)

$$
\begin{aligned}
& F_{m_{2} \text { on } m_{1}}=\frac{G m_{1} m_{2}}{2 R^{2}}=\frac{G m_{1}^{2}}{2 R^{2}} \\
& \vec{L}_{\substack{m_{2} \text { on } m_{1} \\
\text { about } 0}}=\vec{R}_{1} \times \vec{F}_{m_{2} \text { on } m_{1}}
\end{aligned}
$$

90°
is out of the plane by RH rule (1)

$$
\begin{equation*}
\tau_{\text {about o }}^{m_{2} \text { on }}=\frac{R G m_{1} m_{2}}{2 R^{2}} \sin 45^{\circ}=\frac{G m_{1}^{2}}{2 \sqrt{2} R} \tag{1}
\end{equation*}
$$

Angular momentum of m_{1} about M (the origin 0) is not conserved, since m_{1} is not torque-free

$$
\begin{equation*}
\frac{d L}{d t}=\tau \neq 0 \tag{1}
\end{equation*}
$$

(The orientation of \vec{L}_{m}, remains unchanged, bonus +1 though, since torque and \vec{L} are aligned)

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{E}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}} ; \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadr.: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross s'n area; $\rho=$ density of medium Sphere: $V=\frac{4}{3} \pi R^{3}$; Total Surface: $A_{S}=4 \pi R^{2}$; Cross Section=?
uniform circular m.: $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots ; \omega=\frac{2 \pi}{T}$.
$a_{\mathrm{cp}}=\frac{v^{2}}{r} \quad v=\omega r$.
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\text {in }}+K_{2}^{\text {in }}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$

