PHYS 1010 6.0: CLASS TEST 4
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] A charge Q is placed at $(-L, 0)$ and a second charge $5 Q$ is placed at $(\alpha L, 0)$, where α is unknown. Determine α such that when a third charge is placed at $(0,0)$ the force on it is zero. Start with a figure depicting the situation and indicate the forces acting on the third charge. Explain whether it matters whether the third charge is positive or negative.

we want

q (as well as Q) dropped out of the
calculation, the sign of q docsit matter
$(9>0$ or $q<0$ work' the same)
2) [5] A classical model for the hydrogen atom can be imagined as the (heavy) proton being at rest, while the electron executes a circular orbit of radius $R=0.53 \times 10^{-10} \mathrm{~m}$. Find the speed of the electron from the assumption that the static Coulomb force provides the centripetal acceleration for the electron. Compare the electron's kinetic energy to the electric potential energy (calculate both, and ignore gravity; the electrostatic potential energy is $\left.\left.U_{\mathrm{el}}(r)\right)=K q_{1} q_{2} / r\right)$.

$$
\begin{aligned}
& e^{-} \text {motion: } \\
& m a_{c p}=\frac{m v^{2}}{R}=\frac{K e^{2}}{R^{2}} \\
& v^{2}=\frac{K e^{2}}{m R}=\frac{9.0 \times 10^{9}\left(1.6 \times 10^{-19}\right)^{2}}{9.11 \times 10^{-31} \cdot 0.53 \times 10^{-10}} \\
& v^{2}=4.77 \times 10^{12} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& v=2.18 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& K E=\frac{1}{2} m v^{2}=2.17 \times 10^{-18} \mathrm{~J} \text { (or } \mathrm{Nm} \text {) (1) } \\
& P E=\frac{-K e^{2}}{R}=-\frac{9.0 \times 10^{9}\left(1.60 \times 10^{-19}\right)^{2}}{0.53 \times 10^{-10}} \\
& =-4.35 \times 10^{-18} \mathrm{~J} \quad \text { (1) } \\
& \therefore \quad K E=-\frac{1}{2} P E \text { (1) or } K E=\frac{1}{2}|P E| \\
& \text { is also OK. } \\
& \text { (or } P E=-2 K E \text {) or: } K E+P E=E \\
& E=-K E=-2.17 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

expressed in $e V$:

$$
E=-13.6 \mathrm{eV}
$$

3) [5] Consider two parallel (infinitely) large plates separated by distance d, both charged to the same surface density of $+1 \mathrm{nC} / \mathrm{mm}^{2}$. The plates are oriented vertically, one is placed at $x=-d / 2$, the other at $x=+d / 2$. Start with a figure and indicate the direction of the electric field vector at the two locations: $x=-d$ and $x=d$. Calculate the field strength at these locations, and also at $x=0$, and $x=2 d$.

$$
\sigma=1 \mathrm{nC} / \mathrm{mm}^{2} \quad \sigma=1 \mathrm{nC} / \mathrm{mm}^{2}
$$

a)

$$
\text { a) } \begin{align*}
& x=d: \vec{E} \sim \hat{\imath}, \quad E=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}} \\
& E=\frac{1 \mathrm{nc}}{\mathrm{~mm}^{2}} \cdot\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}\right)^{-1} \begin{array}{l}
\mathrm{NB}: \\
1 \mathrm{~mm}^{2}= \\
\left.10^{-6} \mathrm{~m}^{2}\right)
\end{array} \\
&=\frac{10^{-9}}{8.85 \times 10^{-12} \times 10^{-6} \frac{\mathrm{~N}}{\mathrm{C}}} \tag{1}\\
&=\frac{10^{9}}{8.85} \frac{\mathrm{~N}}{\mathrm{C}}=1.1 \times 10^{8} \frac{\mathrm{~N}}{\mathrm{C}} \therefore \vec{E}=1.1 \times 10^{8} \hat{\mathrm{C}} \frac{\mathrm{~N}}{\mathrm{C}}(1)
\end{align*}
$$

b) $\vec{E}=-1.1 \times 10^{8} \hat{\imath} \quad \frac{N}{C}$
c) $E=0$
(1)
d) $x=2 d$: Same result as at $x=d$: (1)

$$
\vec{E}=1.1 \times 10^{8} \hat{\iota} \frac{N}{C}
$$

4) [5] You are given three capacitors. $C_{1}=C_{2}=5.0 \mu \mathrm{~F}$, and $C_{3}=10 \mu \mathrm{~F}$. You are connecting C_{1} and C_{3} in series. What is the equivalent capacitance? Now you are adding to this circuit C_{2} in parallel. Draw the circuit diagram and calculate the equivalent capacitance of the circuit. Now you apply a battery voltage $\Delta V=1.5 \mathrm{~V}$. How much charge will be displaced in C_{2} ? How much in C_{1} ? How much in C_{3} ?
C_{1} and C_{3} in series: $\frac{1}{C_{13}}=\frac{1}{C_{1}}+\frac{1}{C_{3}}$

$$
\begin{equation*}
c_{13}^{e q}=\frac{c_{1} c_{3}}{c_{1}+c_{3}}=\frac{5 \cdot 10}{15} \mu \mathrm{~F} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
C_{e q}=C_{13}^{e q}+C_{2} & =3.3+5.0 \tag{1}\\
& =8.3 \mu \mathrm{~F}
\end{align*}
$$

$C \Delta V=Q$ For C_{2} the full voltage applies

$$
\begin{equation*}
Q_{2}=5 \mu \mathrm{~F} \cdot 1.5 \mathrm{~V}=7.5 \mu \mathrm{C} \tag{1}
\end{equation*}
$$

The amount of charge displaced in C_{1} and C_{3} is the same, since the same current posses through

$$
\therefore \text { Use } C e_{q}^{13}: \quad Q_{B}=3.3 \mu \mathrm{~F} \cdot 1.5 \mathrm{~V}=5.0 \mu \mathrm{C}
$$

C_{1} has a charge displaced of $5.0 \mu \mathrm{C}$ C_{3}

$$
5.0 \mu C
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$.
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$
$f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}, \operatorname{pos} \rightarrow\right.$ neg $)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$

