PHYS 1010 6.0: CLASS TEST 4
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] A point charge $q_{1}=1.5 \mu \mathrm{C}$ is located at $P_{1}(x, y)=(-5,-10) \mathrm{cm}$, and a second point charge $q_{2}=-30 \mathrm{nC}$ is at $P_{2}(x, y)=(10,15) \mathrm{cm}$. Provide a drawing and indicate the forces exerted by q_{1} on q_{2}, and by q_{2} on q_{1} using vector arrows. Label the forces, and calculate them. You can give them either in (x, y) representation or using magnitudes and direction angles.
solution A (magnitude + direction)

$$
\begin{aligned}
F_{q_{1} \text { m } q_{2}} & =F_{q_{2} \text { on } q_{1}}=\frac{k\left|q_{1} q_{2}\right|}{d^{2}}=F \\
d^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =15^{2}+25^{2}=850 \mathrm{~cm}^{2} \\
& =0.085 \mathrm{~m}^{2} \\
F & =\frac{9.0 \times 10^{9} \cdot 1.5 \times 10^{-6} \cdot 30 \times 10^{-9}}{0.085} \\
& =4.76 \times 10^{-3} \mathrm{~N}=4.8 \mathrm{mN}
\end{aligned}
$$

$\vec{F}_{q_{2}=n q_{1}}: \tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{25}{15}$

$$
\begin{gathered}
g_{2}=g_{1}+180^{\circ}=239^{\circ}=\text { angle for } \vec{F}_{q_{1}} \text { on } \\
\text { (or } 4.17 \mathrm{rad})
\end{gathered}
$$

$$
\therefore \vec{F}_{q_{2} o n q_{1}}=\left(4.8 \mathrm{mN}, 59^{\circ}\right) ; \vec{F}_{q_{1}, r q_{2}}=\left(4.8 \mathrm{mN}, 239^{\circ}\right)
$$

port marks
if anwerwrong $\rightarrow 2.5$
solution B (Cartesian word answer): (or $\left.\vec{F}_{q_{1} \text { on } q_{2}}=-\vec{F}_{q_{2} \text { ana }}\right)$

$$
\begin{aligned}
\vec{F}_{q_{2} \text { on q } q_{1}} & =\left(F \cos \theta_{1}\right) \hat{\imath}+(F \sin \theta) \hat{\jmath}=4.8 \times 10^{-3}\left(0.515 \hat{\imath}+0.857 \hat{\jmath}^{\prime}\right) \\
& =(2.5 \hat{\imath}+4.1 \hat{\jmath}) \times 10^{-3} \mathrm{~N} 2.5 \\
\vec{F}_{q_{1} \operatorname{on} q_{2}} & =\left(F \cos \theta_{2}\right) \hat{\imath}+\left(F \sin \theta_{2}\right) \hat{\jmath}=4.8 \times 10^{-3}(-0.515 \hat{\imath}-0.857 \hat{\jmath}) \\
& =-(2.5 \hat{\imath}+4.1 \hat{\jmath}) \times 10^{-3} \mathrm{~N} 1.0
\end{aligned}
$$

2) [5] Consider three thin large-area charged planes with surface densities $\sigma_{1}=+5 \mu \mathrm{C} / \mathrm{cm}^{2}$, $\sigma_{2}=-10 \mu \mathrm{C} / \mathrm{cm}^{2}$, and $\sigma_{3}=+5 \mu \mathrm{C} / \mathrm{cm}^{2}$ respectively. They are separated by 2.0 cm from each other, as shown in a sideways cross-section. Find the electric field at points A, B, C, D.

We add the constant fields from 1, 2, 3. with proper orientations
At (A): $\vec{E}_{1}=\uparrow \quad \vec{E}_{2}=\downarrow \quad E_{3}=\uparrow(1)$

$$
\vec{E}_{\text {net }}^{A}=\hat{\jmath}\left(\frac{1}{2 \varepsilon_{0}}\right)(+5+(-10)+5)=0
$$

σ_{1}
σ_{2}
$\sigma_{3} \frac{A \cdot}{C \cdot}$
\cdot

Livewise at (D) the net field vanishes: $\vec{E}_{1}=\downarrow, \vec{E}_{2}=\uparrow, \vec{E}_{3}=\uparrow$ ($=0$)
At (B): $\vec{E}_{1}=\downarrow, \vec{E}_{2}=\downarrow, \vec{E}_{3}=\uparrow$

$$
\begin{align*}
\vec{E}_{\text {net }} B & =\hat{\jmath}\left(\frac{1}{2 \varepsilon_{0}}\right)(-5+(-10)+5)=\frac{-10 \mu C / \mathrm{cm}^{2}}{2 \varepsilon_{0}} \hat{\jmath} \tag{1}\\
& =-5 \times 10^{-6} \times 10^{4} \frac{C / \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}} \hat{\jmath}
\end{align*}
$$

$$
\begin{equation*}
=-5.6 \times 10^{9} \frac{N}{C} \hat{\jmath} \tag{1}
\end{equation*}
$$

By symmetry at $C: E_{\text {net }}^{C}=+5.6 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{C}} \hat{\jmath}$
0.5 point was given for principle of rector addition to obtain the net field)
0.5 for listing the correct formula for the field streyth from a charged plate $|E|=\frac{|\sigma|}{2 \varepsilon_{0}}$
(statements that field ravishes at $A, D=1$ point)
3) [5] Three point charges with $Q_{1}=2.0 \mu \mathrm{C}, Q_{2}=3.0 \mu \mathrm{C}, Q_{3}=-2.5 \mu \mathrm{C}$ respectively are placed as shown. Calculate the total electric potential energy of the system by adding the three
pairwise interactions.

Electric potential from a point charge Q : $V_{(r)}=\frac{k Q}{r}$
Potential energy for a $2^{\text {nd }}$ charge located a distance r away: $U=\frac{k Q q}{r}$

Three pairs: $u_{12}=\frac{k Q_{1} Q_{2}}{\sqrt{(2 L)^{2}+(L / 2)^{2}}}, U_{23}=\frac{k Q_{2} Q_{3}}{(3 L)}$,

$$
\begin{align*}
& u_{13}=\frac{k Q_{1} Q_{3}}{\sqrt{L^{2}+(L / 2)^{2}}} \\
& u_{12}=\frac{k 6.0 \times 10^{-12}}{\sqrt{4 L^{2}+L^{2} / 4}}=\frac{9.0 \times 10^{9} \cdot 6.0 \times 10^{-12}}{\sqrt{4.25} L} \mathrm{~J}=\frac{2.62 \times 10^{-2} \mathrm{~J}}{L}(1) \tag{1}\\
& u_{23}=\frac{k(-7.5) \times 10^{-12}}{\sqrt{9 L^{2}}}=\frac{-9.0 \times 10^{9} .7 .5 \times 10^{-12}}{3 L}=\frac{-2.25 \times 10^{-2} \mathrm{~J}}{L} \mathrm{~J} \tag{1}\\
& u_{13}=\frac{k(-5.0) \times 10^{-12}}{1.25 L^{2}}=\frac{-9.0 \times 10^{9} \cdot 5.0 \times 10^{-12}}{\sqrt{1.25} \mathrm{~L}}=\frac{-4.02 \times 10^{-2}}{L} \mathrm{~J} \tag{1}\\
& U_{\text {tot }}=u_{12}+u_{23}+u_{13}=\frac{-36.5}{L} \mathrm{mJJ} \\
& \binom{\text { where } L \text { is entered }}{\text { in } S I=\text { meters }} \tag{1}
\end{align*}
$$

4) [5] Using a battery a charge of $\pm Q$ is placed on the plates of a capacitor giving the initial voltage ΔV_{1} across the plates. Then the capacitor is disconnected from the battery, and the plate separation is increased by a factor of 4 . In this final configuration the capacitance is found to be 2.0 nF , and the charge on the plates $\pm 35 \mu \mathrm{C}$. What was the battery voltage in volts?
5) $\Delta V_{1}=\Delta V_{B} \quad 0.5$
6) $C, \Delta V_{B}=Q \quad 0.5$
7) Q remains constant 0.5
8) $C_{1}=\frac{\varepsilon_{0} A}{d_{1}} \rightarrow C_{2}=\frac{\varepsilon_{0} A}{d_{2}}=\frac{\varepsilon_{0} A}{4 d_{1}}=\frac{1}{4} C_{1} 1.0$
9) $C_{2}=2.0 \times 10^{-9} \mathrm{~F} ; \quad C_{1}=4 C_{2}=8.0 \mathrm{nF} 1.0$
10) $\Delta V_{B}=Q / C_{1}=\frac{35 \times 10^{-6} \mathrm{C}}{8.0 \times 10^{-9} \mathrm{~F}}=4.4 \times 10^{3} \mathrm{~V}$

$$
=4.4 \mathrm{kV}^{\prime}(1.5
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area $W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$. $\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$ $\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}}$ for elastic collisions. $\vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$ $\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$ $K_{\text {rot }}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$ $x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$ $m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$ $\vec{F}_{\mathrm{C}}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 k|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\sigma|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos \rightarrow neg $)$ $\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$ point charge: $V_{\text {el }}=\frac{k Q}{r} \quad Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$ parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\mathrm{eq}}^{-1}=C_{1}^{-1}+C_{2}^{-1}$

