PHYS 1010 6.0: CLASS TEST 4 $\,$

Time: 50 minutes; Calculators & formulae provided at the end = only aid; Total = 20 points.

1) [5] A point charge $q_1 = 1.5 \ \mu\text{C}$ is located at $P_1(x, y) = (-5, -10)$ cm, and a second point charge $q_2 = -30$ nC is at $P_2(x, y) = (10, 15)$ cm. Provide a drawing and indicate the forces exerted by q_1 on q_2 , and by q_2 on q_1 using vector arrows. Label the forces, and calculate them. You can give them either in (x, y) representation or using magnitudes and direction angles.

solution A (magnitude + direction)

$$F_{q_{1}mq_{2}} = F_{q_{2}mq_{1}} = \frac{k |q_{1}q_{2}|}{d^{2}} = F$$

$$d^{2} = (x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}$$

$$= 15^{2} + 25^{2} = 850 \text{ cm}^{2}$$

$$F = \frac{q_{.0} \times 10^{7} \cdot 15 \times 10^{6} \cdot 30 \times 10^{9}}{0.085}$$

$$= 4.76 \times 10^{3} \text{ N} = 4.8 \text{ m} \text{ N}$$
direction angle (+ve x-axis) for $F_{q_{2}mq_{1}}$: +an $\theta = \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{25}{15}$

$$\theta_{1} = 59^{0} \qquad y_{2} = \theta_{1} + 180^{\circ} = 239^{\circ} = \text{angle for } F_{q_{1}mq_{2}}$$

$$= (2.5 \hat{c} + 4.1 \hat{f}) \times 10^{-3} \text{ N} = 2.5$$

$$F_{q_{1}mq_{2}} = (F \cos \theta_{1}) \hat{c} + (F \sin \theta_{2}) \hat{f} = 4.8 \times 10^{3} (0.515 \hat{c} - 0.85)$$

$$F_{q_{1}mq_{2}} = (F \cos \theta_{2}) \hat{c} + (F \sin \theta_{2}) \hat{f} = 4.8 \times 10^{3} (-0.515 \hat{c} - 0.85)$$

2) [5] Consider three thin large-area charged planes with surface densities $\sigma_1 = +5 \ \mu C/cm^2$, $\sigma_2 = -10 \ \mu C/cm^2$, and $\sigma_3 = +5 \ \mu C/cm^2$ respectively. They are separated by 2.0cm from each other, as shown in a sideways cross-section. Find the electric field at points A, B, C, D.

We add the constant fields from
$$G_1 \xrightarrow{A}$$
.
1, 2, 3. with proper orientations $G_2 \xrightarrow{C}$.
At A : $\vec{E}_1 = \uparrow \vec{E}_2 = \sqrt{E_3} = \uparrow \vec{O} \cdot G_3 \xrightarrow{C}$.
 $\vec{E}_{net}^A = \hat{f} \cdot (\frac{1}{2\epsilon_0}) (+5 + (-10) + 5) = 0$ \vec{O}
Live wise at \vec{D} the net field vanishes: $\vec{E}_1 = \sqrt{E_2} = \uparrow, \vec{E_3} = \uparrow$
 $A + \vec{B}$: $\vec{E}_1 = \sqrt{1}, \vec{E}_2 = \sqrt{1}, \vec{E}_3 = \uparrow$
 $\vec{E}_{net}^B = \hat{f} \cdot (\frac{1}{2\epsilon_0}) (-5 + (-10) + 5) = -\frac{10 \,\mu C/cm^2}{2\epsilon_0} \hat{f}$
 $= -5 \times 10^6 \times 10^7 \frac{C/m^2}{8.85 \times 10^{-12}} \frac{\hat{f}}{C^2/Nm^2} \hat{f}$
 $= -5.6 \times 10^7 \frac{N}{C} \hat{f}$ \vec{D}
By symmetry at C : $\vec{E}_{net} = + 5.6 \times 10^7 \frac{N}{C} \hat{f}$
 \vec{D}
0.5 point was given for principle of vector addition
to obtain the net field)
0.5 for listing the correct formula for the field strength
from a charted plate $|\vec{F}| = \frac{16-1}{2}$

from a charge plan $|E| = \frac{1}{2\varepsilon_0}$ (statements that field vanishes at A,D = 1 point) 3) [5] Three point charges with $Q_1 = 2.0 \ \mu\text{C}$, $Q_2 = 3.0 \ \mu\text{C}$, $Q_3 = -2.5 \ \mu\text{C}$ respectively are placed as shown. Calculate the *total* electric potential energy of the system by adding the three pairwise interactions.

Electric potential from a point
charge Q:
$$V_{(1)} = \frac{kQ}{r}$$

Potential energy for a 2nd charge
located a distance r away: $U = \frac{kQ_{2}}{r}$
Three parts: $U_{12} = \frac{kQ_{1}Q_{2}}{(RL)^{2} + (L_{2}')^{2}}$, $U_{23} = \frac{kQ_{2}Q_{3}}{(3L)}$,
 $U_{13} = \frac{kQ_{1}Q_{3}}{(L^{2} + (L_{2}')^{2})}$
 $U_{12} = \frac{k}{(4L^{2} + L_{2}')^{4}} = \frac{9.0 \times 10^{7} \cdot 6.0 \times 10^{12}}{\sqrt{4.25' L}} J = \frac{2.62 \times 10^{2} J}{L}$
 $U_{13} = \frac{k(-7.5) \times 10^{12}}{(9L^{27})^{2}} = -\frac{9.0 \times 10^{7} \cdot 5.0 \times 10^{12}}{3L} = -\frac{2.25 \times 10^{2} J}{L}$
 $U_{13} = \frac{k(-5.0) \times 10^{12}}{(-1.25)^{2} L} = -\frac{9.0 \times 10^{7} \cdot 5.0 \times 10^{12}}{1.25' L} = -\frac{4.02 \times 10^{2} J}{L}$
 $U_{13} = \frac{k(-5.0) \times 10^{12}}{1.25 L^{2}} = -\frac{9.0 \times 10^{7} \cdot 5.0 \times 10^{12}}{L} = -\frac{4.02 \times 10^{2} J}{L}$
 $U_{14} = U_{12} + U_{23} + U_{13} = -\frac{-36.5}{L} m J$
(where L is entered
in SI = meters) = -\frac{3.65 \times 10^{-2} J}{L}

4) [5] Using a battery a charge of $\pm Q$ is placed on the plates of a capacitor giving the initial voltage ΔV_1 across the plates. Then the capacitor is disconnected from the battery, and the plate separation is increased by a factor of 4. In this final configuration the capacitance is found to be 2.0 nF, and the charge on the plates $\pm 35 \ \mu$ C. What was the battery voltage in volts?

1)
$$\Delta V_{1} = \Delta V_{B}$$
 0.5
2) $C_{1} \Delta V_{B} = Q$ 0.5
3) Q remains constant 0.5
4) $C_{1} = \frac{z_{0} A}{d_{1}} \longrightarrow C_{2} = \frac{z_{0} A}{d_{2}} = \frac{z_{0} A}{4 d_{1}} = \frac{1}{4} C_{1}$ 1.0
5) $C_{2} = 2.0 \times 10^{-9} F$; $C_{1} = 4 C_{2} = 8.0 \text{ nF}$ 1.0
6) $\Delta V_{B} = Q/C_{1} = \frac{35 \times 10^{-6} C}{8.0 \times 10^{-9} F} = 4.4 \times 10^{3} V$
 $= 4.4 \text{ kV}^{-1} (1.5)$

FORMULA SHEET

 $v(t_{\rm f}) = v(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} a(t) dt$ $s(t_{\rm f}) = s(t_{\rm i}) + \int_{t_{\rm i}}^{t_{\rm f}} v(t) dt$ $v_{\rm f} = v_{\rm i} + a\Delta t \qquad s_{\rm f} = s_{\rm i} + v_{\rm i}\Delta t + \frac{1}{2}a\Delta t^2 \qquad v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta s \qquad g = 9.8 \text{ m/s}^2$ f(t) = t $\frac{df}{dt} = 1$ $F(t) = \int f(t) dt = \frac{t^2}{2} + C$ f(t) = a $\frac{df}{dt} = 0$ $F(t) = \int f(t) dt = at + C$ F(t) =anti-derivative = indefinite integral area under the curve f(t) between limits t_1 and t_2 : $F(t_2) - F(t_1)$ $x^{2} + px + q = 0$ factored by: $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$ uniform circular m. $\vec{r}(t) = R(\cos \omega t \ \hat{\mathbf{i}} + \sin \omega t \ \hat{\mathbf{j}}); \ \vec{v}(t) = \frac{d\vec{r}}{dt} = ...; \ \vec{a}(t) = \frac{d\vec{v}}{dt} =$ $\exp' = \exp; \quad \sin' = \cos; \quad \cos' = -\sin. \qquad \frac{d}{dx} [f(g(x))] = \frac{df}{dg} \frac{dg}{dx}; \qquad (fg)' = f'g + fg'$ $m\vec{a} = \vec{F}_{\text{net}};$ $F_G = \frac{Gm_1m_2}{r^2}; g = \frac{GM_E}{R_E^2}; R_E = 6370 \text{ km}; G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}; M_E = 6.0 \times 10^{24} \text{kg}^2$ $f_{\rm s} \le \mu_{\rm s} n;$ $f_{\rm k} = \mu_{\rm k} n;$ $f_{\rm r} = \mu_{\rm r} n;$ $\mu_{\rm r} << \mu_{\rm k} < \mu_{\rm s}.$ $F_H = -k\Delta x = -k(x - x_0).$ $\vec{F}_{\rm d} \sim -\vec{v}$; linear: $F_{\rm d} = dv$; quadratic: $F_{\rm d} = 0.5 \rho A v^2$; A =cross sectional area $W = F\Delta x = F(\Delta r)\cos\theta$. $W = \text{area under } F_x(x)$. $PE_{\rm H} = \frac{k}{2}(\Delta x)^2$; $PE_q = mg\Delta y$. $\Delta \vec{p} = \vec{J} = \int \vec{F}(t) dt; \ \Delta p_x = J_x = \text{area under } F_x(t) = F_x^{\text{avg}} \Delta t \ ; \quad \vec{p} = m\vec{v}; \ K = \frac{m}{2}v^2$ $\Delta \vec{p}_1 + \Delta \vec{p}_2 = 0$; $K_1^{\text{in}} + K_2^{\text{in}} = K_1^{\text{fin}} + K_2^{\text{fin}}$ for elastic collisions. $\vec{a}_{\text{CM}} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2}{m_1 + m_2}$ $\vec{\tau} = \vec{r} \times \vec{F}$; $\tau_z = rF\sin(\alpha)$ for \vec{r} , \vec{F} in xy plane. $I = \sum_i m_i r_i^2$; $I\alpha_z = \tau_z$; $(\hat{k} = \text{rot. axis})$ $K_{\rm rot} = \frac{I}{2}\omega^2; \ L_z = I\omega_z; \ \frac{d}{dt}L_z = \tau_z; \ \vec{L} = \vec{r} \times \vec{p}; \ \frac{d}{dt}\vec{L} = \vec{\tau}$ $x(t) = \tilde{A}\cos(\omega t + \phi);$ $\tilde{\omega} = \frac{2\pi}{T} = 2\pi f;$ $v_x(t) = ...;$ $v_{\max} = ...$ $m_{\rm e} = 9.11 \times 10^{-31} {\rm kg}$ $m_{\rm p} = 1.67 \times 10^{-27} {\rm kg}$ $e = 1.60 \times 10^{-19} {\rm C}$ $k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \frac{{\rm Nm}^2}{{\rm C}^2}$ $\vec{F}_{\rm C} = \frac{kq_1q_2}{r^2} \hat{\mathbf{r}} \quad \vec{F}_{\rm E} = q\vec{E} \quad E_{\rm line} = \frac{2k|\lambda|}{r} = \frac{2K|Q|}{Lr} \quad E_{\rm plane} = \frac{|\sigma|}{2\epsilon_0} = \frac{|Q|}{2A\epsilon_0} \quad \vec{E}_{\rm cap} = \left(\frac{Q}{\epsilon_0 A}, \text{pos} \to \text{neg}\right)$ $\frac{mv^2}{2} + U_{\rm el}(s) = \frac{mv_0^2}{2} + U_{\rm el}(s_0), \ (U \equiv PE_{\rm el}) \quad U_{\rm el} = qEx \text{ for } \vec{E} = -E \hat{i} \quad V_{\rm el} = U_{\rm el}/q \quad E_x = -\frac{dV_{\rm el}}{dx}$ point charge: $V_{\rm el} = \frac{kQ}{r}$ $Q = C\Delta V_C$ farad $= F = \frac{C}{V}$ $C = \frac{\epsilon_0 A}{d}$ $\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$ parallel C_1, C_2 : $C_{eq} = C_1 + C_2$ series C_1, C_2 : $C_{eq}^{-1} = C_1^{-1} + C_2^{-1}$