PHYS 1010 6.0: CLASS TEST 4
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Three charges $\left(Q_{1}=+2, Q_{2}=-3, Q_{3}=+4\right.$ all in $\left.\mu \mathrm{C}\right)$ are placed in a plane as shown in the diagram. Calculate the force on charge $q=+1 \mathrm{nC}$ in component form. ~ two significant digits

At the location of $\mathrm{of}((1.0,1.0) \mathrm{m})$
Q, contributes field

$$
\begin{aligned}
& \vec{E}_{1}=\frac{k Q_{1}}{2^{2}} \hat{\imath} \text {, } \\
& Q_{2}: \quad \vec{E}_{2}=-\frac{k\left|Q_{2}\right|}{\left(2^{2}+2^{2}\right)}\left(\frac{\hat{\imath}}{\sqrt{2}}+\frac{\hat{\gamma}}{\sqrt{2}}\right) \\
& Q_{3}: \quad \vec{E}_{3}=\frac{k Q_{3}}{3^{2}} \hat{\jmath} \\
& \begin{aligned}
\therefore \vec{E}_{\text {net }} & =\left[k\left(\frac{2}{4}-\frac{3}{8 \cdot 1.414}\right) \hat{\imath}+k\left(\frac{-3}{8 \cdot 1.414}+\frac{4}{9}\right) \hat{\gamma}\right] \times 10^{-6} \\
& =9.0 \times 10^{9} \cdot 10^{-6}(0.235 \hat{\imath}+0.179 \hat{\gamma}) \quad \text { from } \mu \mathrm{A}
\end{aligned} \\
& =(2.1 \hat{\imath}+1.6 \hat{\jmath}) \cdot 10^{3} \frac{N}{C} \\
& \vec{F}_{\text {on } q}=q E_{\text {net }}(1,1 \underbrace{}_{\text {location }} \\
& =1.0 \times 10^{-9} \cdot 10^{3}(2.1 \hat{\imath}+1.6 \hat{\jmath}) N \\
& =(2.1 \hat{\imath}+1.6 \hat{\gamma}) \mu N \text { 4.0 }
\end{aligned}
$$

with part marks depending on method of Calculation [could be done by pair-wise ${ }_{\wedge}^{\left(Q_{i}^{-a}\right)}$ Coulomb forces]
2) [5] Consider the same set-up as in question 1. What is the potential energy of the charge q in the field of charges Q_{1}, Q_{2}, Q_{3} ?

The potential from each charge Q_{i} : $V_{i}=\frac{k Q_{i}}{d_{i}}$ ($d_{i}=$ distance from q-location)
Potential energy of $q: \quad u=q \sum_{i=1}^{3} V_{i}$
distances: $\quad d_{1}=2.0 \mathrm{~m}$

$$
\begin{aligned}
& d_{2}=\sqrt{2.0^{2}+2.0^{2}}=\sqrt{8.0} \mathrm{~m}=2.83 \mathrm{~m} \\
& d_{3}=3.0 \mathrm{~m}
\end{aligned}
$$

$$
\begin{align*}
& V(1.0,1.0)=k\left(\frac{2}{2.0}+\frac{-3}{2.83}+\frac{4}{3.0}\right) \times 10^{-6} \\
& V(x, y) \\
&=9.0 \times 10^{9} \times 10^{-6}(1.0-1.06+1.33) \\
&=11.4 \times 10^{3} \mathrm{~V}(01 \mathrm{ts})=1.1 \times 10^{4} \mathrm{~V} \tag{5}\\
& \begin{aligned}
U_{9} & =9 V(1.0,1.0) \\
& =1.0 \times 10^{-9} \cdot 1.1 \times 10^{4} \underbrace{V C}_{\mathrm{J}=\mathrm{Nm}^{\prime}} \\
& =1.1 \times 10^{-5} \mathrm{~J}
\end{aligned}
\end{align*}
$$

with part-marks for computational steps since $P E_{q}$ can be obtained also by summing pair-wise $\left(q-Q_{i}\right)$ PE expressions.
(less economical, as in Q1 would be avoidance of $\vec{E}_{\text {not }}$)
3) [5] A parallel-plate set-up is connected to a DC voltage source of 100 V , as shown in Fig a. The square plates (base length $a=20 \mathrm{~cm}$) are separated by $d=2.0 \mathrm{~cm}$. a. Draw field lines inside the capacitor, and also show (and label) some equipotential lines (using Fig. a).
b. a proton beam with speed $v=1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$ is sent through the plates as show in Fig b. Will the protons make it through the plates? Calculate.

proton has charge $+e, e=1.60 \times 10^{-19} \mathrm{C}$

$$
\vec{E}=\frac{\Delta V}{d}(-\hat{\gamma}) \quad \text { and } \quad \vec{F} \quad=e \vec{E}=-\frac{e \Delta V}{d} \hat{\gamma}
$$

ignore granity, since \vec{E} dominates.

$$
\begin{aligned}
2^{n d} \text { law: } m_{p} a_{y} & =-\frac{e \Delta v}{d} \quad \therefore a_{y}=-\frac{e}{m_{p}} \frac{\Delta v}{d} 0.5 \\
a_{y}=-\frac{1.60 \times 10^{-19} \cdot 100}{1.67 \times 10^{-27} \cdot 2.0 \times 10^{-2}} & =0.479 \cdot 10^{-19+2} \cdot 10^{27+2} \\
& =4.79 \cdot 10^{11} \frac{\mathrm{~m}}{s^{2}}<g=9.8 \frac{m+}{s} 2
\end{aligned}
$$

$$
x=a=0.2 \mathrm{~m} \quad x=v_{0} t_{f} \quad \therefore \quad t_{f}=\frac{x}{v_{0}}=\frac{0.2}{1.5 \times 10^{5}} \mathrm{~s}
$$

time of flight through plates: $t_{f}=0.133 \times 10^{-5} \mathrm{~s}=1.33 \mu \mathrm{~s}$

$$
\begin{aligned}
\Delta y_{f}=\frac{1}{2} a_{y} t_{f}^{2} & =0.5 \cdot 4.79 \times 10^{11} \cdot 1.33^{2} \cdot 10^{-12} \mathrm{~m} \\
& =4.24 \times 10^{-1} \mathrm{~m}=0.42 \mathrm{~m}>\frac{d}{2}=0.02 \mathrm{~m}
\end{aligned}
$$

\therefore The protons hit the bottom plate! 0.5
4) [5] A cylindrical piece of copper wire has dimensions: length $=10 \mathrm{~cm}$, diameter $=1 \mathrm{~mm}$. Calculate the resistance. Aluminum has a resistivity larger than copper by a ratio of 2.7/1.7. Suppose you want to replace the copper resistor by one of the same length but made of aluminum. To what value should you change the diameter? (This determines the wire gauge.)

$$
\begin{aligned}
& R=\rho \frac{L}{A} A=\pi \frac{d^{2}}{4}=\frac{3.14}{4} \cdot 10^{-6} \mathrm{~m}^{2} \\
& R=1.7 \cdot 10^{-3} \frac{0.1 \cdot 4}{3.1410^{-6}}=0.1 \mathrm{~m}, \rho=1.7 \times 10^{-8} \Omega \mathrm{~m} \\
& R=\frac{2.2 \times 10^{-3} \Omega}{2.2} \Omega=2.2 \mathrm{~m} \mathrm{\Omega} 2 \\
& \frac{R}{L}=\rho^{\prime} \cdot \frac{K}{A^{\prime}}=\rho \frac{K}{A} \\
& \therefore \quad \frac{A^{\prime}}{A}=\frac{\rho^{\prime}}{\rho}=\frac{2.7}{1.7}=1.59
\end{aligned}
$$

we need to increase the cross-sectional area to make up for the poorer conductivity (higher resistivity). But area $A \sim d^{2}$, so if $\frac{A^{\prime}}{A} \sim\left(\frac{d^{\prime}}{d}\right)^{2}$, then $\frac{d^{\prime}}{d} \sim \sqrt{\frac{A^{\prime}}{A}}=1.26 \quad \therefore$ The diameter of the Al wire should be 1.3 mm with part-marks

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area $W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\text {in }}+K_{2}^{\text {in }}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }}$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 k|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\sigma|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos \rightarrow neg $)$ $\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{Vl}}}{d x}$ point charge: $V_{\mathrm{el}}=\frac{k Q}{r} \quad Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$ parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
resistance vs resisitivity: $R=\rho \frac{L}{A}$ ($L=$ length, $A=$ cross section); copper: $\rho=1.7 \times 10^{-8} \Omega \mathrm{~m}$

