PHYS 1010 6.0: CLASS TEST 5
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] Analyze this experiment: in the circuit shown the switch has been in position A for a long time, while capacitors C_{2} and C_{3} were uncharged. At time $t=0$ the switch is flipped to position B , and remains there for a long time. What is the charge on each of the three capacitors at the end of the experiment? Compare your answer to what charge was held by C_{1} at $t=0$, just before the switch was flipped.

$$
\begin{array}{ll}
R_{1}=50 \Omega & C_{1}=20 \mu \mathrm{~F} \\
R_{2}=100 \Omega & C_{2}=10 \mu \mathrm{~F} \\
C_{3}=5 \mu \mathrm{~F}
\end{array}
$$

analyze position A :
long time \rightarrow no current $\rightarrow \Delta V_{R_{1}}=0 ; \Delta V_{c}=9 \mathrm{~V}$

$$
Q=C \Delta V=20 \times 10^{-6} \cdot 9.0=180 \mu \mathrm{C} \text { - }
$$

position $B: Q_{1}=180 \mu \mathrm{M}$ will redistribute such that:

$$
\begin{aligned}
& Q_{1} \rightarrow Q_{1}^{\prime}, Q_{2}=Q_{3} \text { (same current) ; } Q_{1}^{\prime}=Q_{1}-Q_{2} \\
& C_{23}^{e q}=\frac{c_{2} c_{3}}{c_{2}+c_{3}}=\frac{50}{15}=3.33 \mu \mathrm{~F} \\
& \begin{array}{l}
\overline{\Delta V_{C_{1}}}=V_{C_{23}^{e q}} \text { when curve } \\
\frac{Q_{1}^{\prime}}{C_{1}}=\frac{Q_{2}}{C_{23}} \text { eq }=\frac{Q_{1}-Q_{1}^{\prime}}{C_{23}^{e q}}
\end{array} \\
& \frac{Q_{1}^{\prime}}{C_{1}^{\prime}}+\frac{Q_{1}^{\prime}}{C_{23}^{29}}=\frac{Q_{1}}{C_{23}^{e 9}} \therefore Q_{1}^{\prime}\left(\frac{1}{C_{1}}+\frac{1}{C_{23}^{e q}}\right)=\frac{Q_{1}}{C_{23}^{e 9}} \\
& \therefore Q_{1}^{\prime} \frac{C_{23}^{e q}+C_{1}}{C_{1} C_{23}^{e q}}=\frac{Q_{1}}{C_{23}^{e q}} \therefore \quad Q_{1}^{\prime}=\frac{C_{1} C_{23}^{q} Q_{1}}{C_{23}^{q_{9}}\left(C_{23}^{e q}+C_{1}\right)} \\
& Q_{1}^{\prime}=\frac{180 \mu C \cdot 20}{20+3.33}=154.3 \mu C \quad \therefore \quad Q_{2}=Q_{1}-Q_{1}^{\prime}=25.7 \mu C=26 \mu C
\end{aligned}
$$

Comparison: $180 \mu \mathrm{C}$ splits into remaining $154 \mu \mathrm{C}$ on C_{1} while C_{2} and C_{3} hold 26. μC respectively Note $Q_{1} \neq Q_{1}^{\prime}+Q_{2}+Q_{3}$!!!
2) [5] In the circuit shown the switch has been in position A for a long time. (a) what is the voltage drop across resistor R_{1} ? (b) what is the voltage drop across R_{2} ? (c) How much charge is stored in the capacitor? (d) The switch is now (time $t=0$) flipped to position B: graph the magnitude of the voltage drop across R_{1} as a function of time. Calculate the time constant, and label your axes properly.

$$
\begin{aligned}
& R_{1}=1.0 \mathrm{k} \Omega \\
& R_{2}=0.5 \mathrm{k} \Omega \\
& C=4.7 \mathrm{\mu F}
\end{aligned}
$$

a. $\Delta V_{R_{1}}=0$ (1) b. $\Delta V_{R_{2}}=\Delta V_{R_{1}}$ (kichiholf loop rule)

$$
=0
$$

c. $\Delta V_{C}=\Delta V_{B} \quad \therefore \quad Q=C \Delta V=4.7 \mu F-9 V=42.3 \mu C$

$$
\begin{aligned}
\tau & =R_{e q} C \\
R_{e q} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{0.5}{1.5} \mathrm{k} \Omega \\
& =330 \Omega \\
\tau & =330.4 .7 \times 10^{-6} \mathrm{~s} \\
& =1.55 \mathrm{~ms}
\end{aligned}
$$

3) [5] Three very long current-carrying wires are shown in the figure, as well as locations A,B,C,D, which are all in the $x-y$ plane spanned by \hat{i} and \hat{j}. (a) Calculate \vec{B} (magnitude and direction in component form) at locations A, B, C, D. (b) What can you say about the field strength far away from the wires ($|y|$ very large, or $|z|$ very large)?

$\vec{B}_{i}=\left(\frac{\mu_{0} I}{2 \pi d}\right.$, direction by simple RH rule $)$
location (A): $\vec{B}_{1} \sim \hat{k} \quad \vec{B}_{2} \sim-\hat{k} \quad \vec{B}_{3} \sim \vec{k}$

$$
\begin{array}{rlrl}
B_{1} & =\frac{\mu_{0} \cdot 10}{2 \pi} \cdot 0.5 \times 10^{-2}, \quad B_{2} & =\frac{\mu_{0} \cdot 20}{2 \pi \cdot 15 \times 10^{-2}, B_{3}}=\frac{\mu_{0} \cdot 10}{2 \pi \cdot 2.5 \times 10^{-2}} \\
& =\frac{10 \cdot 10^{-7}}{2 \cdot 0.5 \times 10^{-2}} & =\frac{10 \cdot 10^{-7}}{2 \cdot 2.5 \times 10^{-2}} \\
& =10 \cdot 10^{-5} T & =6.67 \times 10^{-5} \mathrm{~T} & =2 \times 10^{-5} \mathrm{~T}
\end{array}
$$

$$
B_{\text {net }}=B_{1}-B_{2}+B_{3}=5.3 \times 10^{-5} \mathrm{~T}
$$

(B): $\vec{B}_{1} \sim-\hat{k} ; \vec{B}_{2} \sim-\hat{k} ; \vec{B}_{3} \sim \hat{k}$ stating out of plane is ok

$$
\begin{align*}
& B_{1}=10 \cdot 15^{-5} \mathrm{~T} ; B_{2}=20 \cdot 15^{-5} \mathrm{~T} ; B_{3}=3.33 \cdot 10^{-5} \mathrm{~T} \\
& B_{\text {net }}=26.7 \cdot 10^{-5} \mathrm{~T} \vec{B}_{\text {net }}^{B}=-26.7 \times 10^{-5} \hat{k} \mathrm{~T} \tag{1}
\end{align*}
$$

stating into plane is or
(c) by symmeting

$$
\begin{align*}
& \vec{B}_{\text {net }}^{C}=-\vec{B}_{\text {net }}^{B}=+26.7 \times 10^{-5} \hat{k} \mathrm{~T} \tag{0}\\
& \vec{B}_{\text {net }}^{D}=-\vec{B}_{\text {net }} A=-5.3 \times 10^{-5} \hat{k} \mathrm{~T}
\end{align*}
$$

(D) $\underbrace{\text { (C) D: }}$ not getting the right number but stating the symmetry property $=$
$B_{\text {net }}=-\vec{B}_{\text {net }}^{A}=-5.3 \times 10^{-5} \hat{k} T$
b. At large distances the field from each wire $\sim \frac{1}{d}$, goes to zero 0.5
but in addition there is a further cancellation "no net current" (expect $B \sim \frac{1}{d^{2}}$) fast fall-off. (0.5)
4) [5] The figure shows a copper rod of length $X=75 \mathrm{~cm}$ suspended by two springs to balance its weight (the springs are attached using plastic hooks). Both springs are characterized by a constant of $k=20 \mathrm{~N} / \mathrm{m}$ respectively, and the rod was determined to have a mass of 500 g . A uniform magnetic field of $B=1.5 \mathrm{~T}$ acts over the entire length of the rod with an orientation into the page (as shown). Now you connect flexible low-mass electric contacts at points P_{1} and P_{2}, and drive a current through the rod by connecting P_{1} to the negative terminal, and P_{2} to the positive terminal of a powerful battery. Your current meter states that 50 Amps are flowing $5.0!$ through the battery. (a) is the rod moving up or down when you turn on the current? Explain! (b) Calculate by how much the rod is displaced.

a. Current convention $P_{1(-)}<P_{2}(t)$

By the $R H$ rule $\vec{F}=q \vec{V} \times \vec{B}^{*}$ for $9>0$ movinglelt The magnetic force pushes the wire down (i) for result (1) forplanation ${ }^{*}\left(\vec{F}_{M}=l \vec{I} \times \vec{B}\right)$-both acceptable.
b. gravity plays no role, since the spoings cancelled it at the beginning

Force balance: $\quad k_{1} \Delta x+k_{2} \Delta x=I l B ; l=X$
 $\left\{\begin{array}{l}2 k \Delta x \\ \vdots \\ \text { IX }\end{array}\right.$

$$
\Delta x=0.141 \mathrm{~m}=14 \mathrm{~cm} \text { (2) for result }
$$

Reasonable? The springs pre-stetched to cancel gravity by $2 k \Delta x_{0}=m g \quad \therefore \Delta x_{0}=\frac{m g}{2 R}=\frac{0.5 .9 .8}{40}$ extra.

$$
\text { bonus }+1
$$

FORMULA SHEET

$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \quad \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
$m \vec{a}=\vec{F}_{\mathrm{net}} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area $W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\mathrm{fin}}+K_{2}^{\mathrm{fin}}$ for elastic collisions. $\vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 k|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\sigma|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos \rightarrow neg $)$ $\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{Vl}}}{d x}$ point charge: $V_{\mathrm{el}}=\frac{k Q}{r} \quad Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$ parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
resistance vs resisitivity: $R=\rho \frac{L}{A}$ ($L=$ length, $A=$ cross section); copper: $\rho=1.7 \times 10^{-8} \Omega \mathrm{~m}$ $\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{\vec{v} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \vec{\Delta} \times \vec{r}}{r^{3}} \quad B_{\text {wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d}$ (use RH rule) $\quad \frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}} \quad$ tesla $=\mathrm{T}=\frac{\mathrm{N}}{\mathrm{Am}}$
short coil, $R \gg L$ (N turns): $B_{\text {coil, centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$ mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d}$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$

