PHYS 1010 6.0: CLASS TEST 6
Time: 50 minutes; Calculators \& formulae provided at the end $=$ only aid; Total $=20$ points.

1) [5] You have a laser which produces linearly polarized light of intensity I_{0} in the vertical direction. It is physically tied down, you cannot rotate it. You have three ideal polarizers, meaning polarized light aligned with the polarizer axis goes through without attenuation. You know the law of Malus $I(\phi)=I_{0} \cos ^{2} \phi$. What is your best option to produce horizontally polarized light, and how much intensity will you get? Assume that you will use your polarizer with equal relative orientation of adjacent polarizers. Which relative orientation will you use for the polarizes?
Using three polarizes with $\phi=30^{\circ}=\frac{\pi}{6}$ relative orientation results in a filter which produces a 90° rotation for light aligned with the first polarizer
Laser

$$
\begin{aligned}
I_{2} & =I_{1} \cos ^{2}\left(30^{\circ}\right. \\
I_{3} & =I_{2} \cos ^{2}(3 . \\
I_{3}=I_{0}\left(\cos ^{2}\left(30^{\circ}\right)\right)^{3} & =I_{0} \cos ^{6}\left(30^{\circ}\right)
\end{aligned}
$$

Attenuation: $\cos ^{6}\left(30^{\circ}\right)=0.422$

$$
I_{\text {out }}=0.42 I_{\text {in }}
$$

2) [5] A piano tuner adjusts the tension force on the A440 Hz string from 2080 N to 2100 N in order to tune it properly. He measures the vibrating portion of the string to be 64 cm long. What is the mass of this section of the string? What fundamental frequency was the string playing before it was tuned right?

Standing wave, fund amental $(n=1)$

$$
\begin{align*}
& \lambda_{1}=2 L \\
& v_{w}=\lambda f \\
& \therefore \quad v_{\omega}=2 \cdot 0.64 \cdot 440 \frac{\mathrm{~m}}{\mathrm{~s}}=563.2 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1}\\
& v_{w}=\sqrt{\frac{F_{t}}{\mu}} \quad \therefore v_{w}{ }^{2}=\frac{F_{t}}{\mu} \quad \therefore \mu=\frac{F_{t}}{v_{w}{ }^{2}} \\
& \left(\mu=\frac{M}{L}\right) \therefore M=\frac{F_{t} L}{v_{\omega}^{2}}=\frac{2100 \cdot 64}{3.172 \cdot 10^{5}} \mathrm{~kg}=\underline{\underline{4.2(4) \mathrm{g}}(1)} \\
& \tilde{v}_{w}=\sqrt{\frac{\tilde{F}_{t}}{\mu}}=\sqrt{\frac{2080 \cdot .64}{4.24 \times 10^{-3}}} \frac{\mathrm{~m}}{\mathrm{~s}}=560 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1}\\
& \tilde{f}=\frac{\tilde{v}_{w}}{\lambda}=\frac{560}{1.28} \mathrm{~Hz}=437.8 \mathrm{~Hz}=438 \mathrm{~Hz} \tag{1}
\end{align*}
$$

3) [5] A sodium lamp emits light of wavelength 589 nm . Two glass plates of thickness 0.5 cm each are placed on top of each other over the lamp, and a gap forms which is typically in the $\mu \mathrm{m}$ range. Explain using two sentences why interference fringes appear, and support them by a drawing explaining a dark fringe. Provide a calculation, i.e., make an estimate of what the local gap could be at the dark spot and state the order m for the interference. Assume normal incidence for the light. Do not forget about the phase jump under reflection when reflecting from an interface connecting lower $-n$ to higher $-n$ medium.

Two interfering paths:
Path 2 has added
path length $2 d$ with
optical $P L=P L$
$(n=1 \quad$ for air $)$
optical $P L=P L$
$(n=1$ for air)
+(1) for detail (n-values, accuracy)
$\mathrm{Na} \operatorname{lamp}$

$$
I \sim\left(E_{1}+E_{2}\right)^{2} \text { is }
$$

sensitive to interference.
Destructive interference occurs when crests from
(1) meet with through from (2) (or vice versa)
$\begin{gathered}N \\ \frac{1}{~ A c c u m u l a t e d ~ p h a s e ~(p a t h ~ 2) ~} \\ \text { difference }\end{gathered} \quad \phi_{2}-\phi_{1}=\frac{2 \pi}{\lambda} 2 d$
When $\quad\left(\phi_{2}-\phi_{1}\right)=$ odd integer $\cdot \pi=\left(\begin{array}{l}2 m+1) \pi \\ m=0,1,2, \ldots\end{array}\right.$
destructive interference.
(0.5) Phase jumps irrelevant, as there are two in (2).

$$
\left.0.589\left(\frac{m}{2}+\frac{1}{4}\right) \approx 1 \quad \text { (in } \mu \mu_{1}\right)
$$

\rightarrow higher $m \quad 3$
4) [5] An ambulance siren is blasting a sound with a fundamental of $f=1.2 \mathrm{kHz}$ while parked at the front of your apartment building. You hear it from far away while driving on a straight road towards the house. You get nervous and step on the gas. What pitch (frequency) are your ears perceiving as the speedometer needle reaches $80 \mathrm{~km} / \mathrm{h}$? When you get out of the (stopped) car, what frequency do your ears record?

$$
\begin{aligned}
& \begin{array}{l}
f_{\text {obs }}=f_{\text {sic }}\left(1+\frac{v_{\text {obs }}}{v_{s}}\right)=1.2 \cdot 10^{3}\left(1+\frac{v_{\text {car }}}{v_{s}}\right) \\
v_{\text {car }}=\frac{80}{3.6} \frac{\mathrm{~m}}{\mathrm{~s}}=22.2 \frac{\mathrm{~m}}{\mathrm{~s}} \text { or for ersh } \\
\text { formula }
\end{array} \\
& \frac{v_{\text {car }}}{v_{s}}=0.0647 \quad(6.5 \% \text { increase in } f)
\end{aligned}
$$

$$
\begin{aligned}
& f_{\text {stat. obs. }}=f_{0}=1.2 \mathrm{kHz}
\end{aligned}
$$

FORMULA SHEET
$v\left(t_{\mathrm{f}}\right)=v\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a(t) d t \quad s\left(t_{\mathrm{f}}\right)=s\left(t_{\mathrm{i}}\right)+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} v(t) d t$
$v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \quad s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2} \quad v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta s \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f(t)=t \quad \frac{d f}{d t}=1 \quad F(t)=\int f(t) d t=\frac{t^{2}}{2}+C$
$f(t)=a \quad \frac{d f}{d t}=0 \quad F(t)=\int f(t) d t=a t+C \quad F(t)=$ anti-derivative $=$ indefinite integral area under the curve $f(t)$ between limits t_{1} and $t_{2}: F\left(t_{2}\right)-F\left(t_{1}\right)$
$x^{2}+p x+q=0$ factored by: $x_{1,2}=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q}$
uniform circular m. $\vec{r}(t)=R(\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}}) ; \vec{v}(t)=\frac{d \vec{r}}{d t}=\ldots ; \vec{a}(t)=\frac{d \vec{v}}{d t}=\ldots$
$\exp ^{\prime}=\exp ; \quad \sin ^{\prime}=\cos ; \quad \cos ^{\prime}=-\sin . \quad \frac{d}{d x}[f(g(x))]=\frac{d f}{d g} \frac{d g}{d x} ; \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ $m \vec{a}=\vec{F}_{\text {net }} ; \quad F_{G}=\frac{G m_{1} m_{2}}{r^{2}} ; g=\frac{G M_{E}}{R_{E}^{2}} ; R_{E}=6370 \mathrm{~km} ; G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} ; M_{E}=6.0 \times 10^{24} \mathrm{~kg}, ~}$ $f_{\mathrm{s}} \leq \mu_{\mathrm{s}} n ; \quad f_{\mathrm{k}}=\mu_{\mathrm{k}} n ; \quad f_{\mathrm{r}}=\mu_{\mathrm{r}} n ; \quad \mu_{\mathrm{r}} \ll \mu_{\mathrm{k}}<\mu_{\mathrm{s}} . \quad F_{H}=-k \Delta x=-k\left(x-x_{0}\right)$.
$\vec{F}_{\mathrm{d}} \sim-\vec{v}$; linear: $F_{\mathrm{d}}=d v$; quadratic: $F_{\mathrm{d}}=0.5 \rho A v^{2} ; \quad A=$ cross sectional area
$W=F \Delta x=F(\Delta r) \cos \theta . \quad W=$ area under $F_{x}(x) . \quad P E_{\mathrm{H}}=\frac{k}{2}(\Delta x)^{2} ; \quad P E_{g}=m g \Delta y$.
$\Delta \vec{p}=\vec{J}=\int \vec{F}(t) d t ; \Delta p_{x}=J_{x}=$ area under $F_{x}(t)=F_{x}^{\text {avg }} \Delta t ; \quad \vec{p}=m \vec{v} ; \quad K=\frac{m}{2} v^{2}$
$\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0 ; K_{1}^{\mathrm{in}}+K_{2}^{\mathrm{in}}=K_{1}^{\text {fin }}+K_{2}^{\text {fin }} \quad$ for elastic collisions. $\quad \vec{a}_{\mathrm{CM}}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}$
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau_{z}=r F \sin (\alpha)$ for \vec{r}, \vec{F} in $x y$ plane. $\quad I=\sum_{i} m_{i} r_{i}^{2} ; \quad I \alpha_{z}=\tau_{z} ;(\hat{k}=$ rot. axis $)$
$K_{\mathrm{rot}}=\frac{I}{2} \omega^{2} ; \quad L_{z}=I \omega_{z} ; \quad \frac{d}{d t} L_{z}=\tau_{z} ; \quad \vec{L}=\vec{r} \times \vec{p} ; \quad \frac{d}{d t} \vec{L}=\vec{\tau}$
$x(t)=A \cos (\omega t+\phi) ; \quad \omega=\frac{2 \pi}{T}=2 \pi f ; \quad v_{x}(t)=\ldots ; \quad v_{\max }=\ldots$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.60 \times 10^{-19} \mathrm{C} \quad K=\frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\vec{F}_{\mathrm{C}}=\frac{K q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \vec{F}_{\mathrm{E}}=q \vec{E} \quad E_{\text {line }}=\frac{2 K|\lambda|}{r}=\frac{2 K|Q|}{L r} \quad E_{\text {plane }}=\frac{|\eta|}{2 \epsilon_{0}}=\frac{|Q|}{2 A \epsilon_{0}} \quad \vec{E}_{\text {cap }}=\left(\frac{Q}{\epsilon_{0} A}\right.$, pos $\left.\rightarrow \mathrm{neg}\right)$
$\frac{m v^{2}}{2}+U_{\mathrm{el}}(s)=\frac{m v_{0}^{2}}{2}+U_{\mathrm{el}}\left(s_{0}\right),\left(U \equiv P E_{\mathrm{el}}\right) \quad U_{\mathrm{el}}=q E x$ for $\vec{E}=-E \hat{i} \quad V_{\mathrm{el}}=U_{\mathrm{el}} / q \quad E_{x}=-\frac{d V_{\mathrm{el}}}{d x}$
$Q=C \Delta V_{C} \quad$ farad $=\mathrm{F}=\frac{\mathrm{C}}{\mathrm{V}} \quad C=\frac{\epsilon_{0} A}{d} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
parallel $C_{1}, C_{2}: C_{\text {eq }}=C_{1}+C_{2} \quad$ series $C_{1}, C_{2}: C_{\text {eq }}^{-1}=C_{1}^{-1}+C_{2}^{-1}$
$\Delta V_{\text {loop }}=\sum_{i} \Delta V_{i}=0 \quad \sum I_{\text {in }}=\sum I_{\text {out }}$
$P=\Delta V I \quad$ watt $=\mathrm{W}=\mathrm{VA} \quad P_{R}=\Delta V_{R} I=I^{2} R$
$\tau=R C \quad Q(t)=Q_{0} e^{-t / \tau} \quad I(t)=-\frac{d Q}{d t}=\frac{\Delta V_{0}}{R} e^{-t / \tau}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \vec{s} \times \vec{r}}{r^{3}} \quad B_{\text {wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d}$ (use RH rule) $\quad \frac{\mu_{0}}{4 \pi}=10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}} \quad$ tesla $=\mathrm{T}=\frac{\mathrm{N}}{\mathrm{Am}}$
short coil, $R \gg L$ (N turns): $B_{\text {coil,centre }}=\frac{\mu_{0} N I}{2 R} \quad$ solenoid, $L \gg R: B_{\text {sol, inside }}=\frac{\mu_{0} N I}{L}$
mag dipole: $\vec{\mu}=(A I$, from south to north $) \quad \vec{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ on axis, far away
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B} \quad$ force on current \perp to $\vec{B}: F_{\text {wire }}=I L B$
force betw. parallel wires: $F_{2 \text { wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d} \quad$ torque on mag dipole: $\vec{\mu}$ in $\vec{B}: \vec{\tau}=\vec{\mu} \times \vec{B}$ bar (length L) moves w. $\vec{v} \perp \vec{B}$ gen. EMF: $\varepsilon=v L B$;
$\Phi_{m}=\vec{A} \cdot \vec{B} \quad \Phi_{m}=A B \cos \theta \quad \varepsilon=\left|\frac{d \Phi_{m}}{d t}\right|=\left|\vec{B} \cdot \frac{d \vec{A}}{d t}+\vec{A} \cdot \frac{d \vec{B}}{d t}\right|$
$L=\frac{\Phi_{m}}{I} \quad$ henry $=\mathrm{H}=\frac{\mathrm{Tm}^{2}}{\mathrm{~A}} \quad \varepsilon_{\text {coil }}=L\left|\frac{d I}{d t}\right| \quad \Delta V_{L}=-L \frac{d I}{d t} \quad \mathrm{PE}_{L}=\frac{L}{2} I^{2}$
series L and R: $\tau=\frac{L}{R} \quad I(t)=I_{0}\left(1-e^{-t / \tau}\right)$; parallel L and C: $\omega=\sqrt{\frac{1}{L C}} \quad I(t)=\omega Q_{0} \sin \omega t$ $\lambda f=v_{\mathrm{w}} \quad$ sinusoid +ve x-dir'n: $D(x, t)=A \sin \left(2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)+\phi_{0}\right)=A \sin \left(k x-\omega t+\phi_{0}\right)$ transverse wave on a string: $v_{\mathrm{w}}=\sqrt{\frac{T}{\mu}}$ where T is tension, $\mu=M / L$
$\omega=v_{\mathrm{w}} k \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ in air at $\mathrm{T}=20^{\circ} \mathrm{C} \quad$ in water: $v_{\text {sound }}=1480 \mathrm{~m} / \mathrm{s}$
light in vac.: $v_{\mathrm{w}}=c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ visible: $\lambda=400 \mathrm{~nm}$ (blue $/ \mathrm{UV}$); $\lambda=700 \mathrm{~nm}$ (red $/ \mathrm{IR}$) medium: $n_{\text {glass }}=1.5 ; n_{\text {water }}=1.333$; speed: c / n; wavelength: $\lambda_{\text {vac }} / n$; acc. phase: $\phi=\frac{2 \pi n \Delta x}{\lambda_{\text {vac }}}$ src speed $v_{\text {src }}: f_{+}=\frac{f_{0}}{1-v_{\text {src }} / v_{\mathrm{w}}} ; f_{-}=\frac{f_{0}}{1+v_{\text {src }} / v_{\mathrm{w}}} ; \quad$ obs speed $v_{\text {obs }}: f_{+}=f_{0}\left(1+\frac{v_{\text {obs }}}{v_{\mathrm{w}}}\right) ; f_{-}=f_{0}\left(1-\frac{v_{\text {obs }}}{v_{\mathrm{w}}}\right)$ $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \quad \sin \alpha+\sin \beta=2 \cos \frac{\alpha-\beta}{2} \sin \frac{\alpha+\beta}{2}$ transverse standing wave, string length $L: \lambda_{n}=\frac{2 L}{n} \quad n=1,2, \ldots \quad f_{n}$ from $\lambda_{n} f_{n}=c_{\mathrm{w}}$

