
PHYS4020

MARKO HORBATSCH

1. Radiated power from a filament of infinite length

1.1. Introduction. We start in a very basic way. We just learned from Example 10.2 in
Griffiths 4e (Gr4e) how to obtain the vector potential including retardation effects for a
line current of infinite length (assumed to be along ẑ:

Az(s, t) =
µ0
4π

∫ ∞
−∞

I(tr)

r

dz , (1)

where t is the time at which the observation of the vector potential is made at location s,
and the retarded time is defined as tr = t − r /c. Our goal here is not only to provide a
precursor to the treatment of the radiation problem from a finite electric dipole (Section
11.1.2 in Gr4e), but actually to consider the fields generated for any distance s from the
wire. This will allow us to understand better what retardation means.

By choosing the filament to be of infinite length we ignore the electric charges ±q(t)
that appear at the endpoints of the dipole (at z = ±d/2, where the separation d defines
for initial charge q0 the dipole moment p0 = q0d). We can thus ignore the scalar potential,
and just worry about the vector potential. The nice thing about it is that we understand
the electric field to be purely derived as a curly field from

Ez(s, t) = −∂Az

∂t
. (2)

The magnetic field follows in the usual way as ~B = ∇× ~A, which in the simple geometry
(no z and no ϕ dependence due to symmetry) results in

Bϕ(s, t) = −∂Az

∂s
. (3)

The task is to calculate (1) and then to derive the electric and magnetic fields from (2)
and (3) respectively. The phase relation between the two fields is of interest, and it will
be shown that it becomes simple for distances s on the wavelength scale λ. Ultimately,
our solution should be connected to the wave equation which Az(s, t) satisfies, since (1) is
a formal solution to it. This will provide a connection to the more general treatment of
antenna theory as provided in advanced electrical engineering textbooks.
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1.2. Calculation. We begin for convenience with a step borrowed from Example 10.2 in
Gr4e. We choose a point at z = 0 and a distance s away from the infinitely long, thin
(infinitesimal) wire. The contributions to Az from z < 0 and from z > 0 are equal and
add, so we can choose to take twice the integral over positive z, and replace (1) by

Az(s, t) =
µ0
2π

∫ ∞
0

I(tr)

r

dz , (4)

As we integrate elements of the filament dz located at height z the distance between current
element and the observation point is expressed as (cf. Fig. 10.4 in Gr4e)

r =
√
s2 + z2 . (5)

Assuming a current of form

I(t) = I0 sinωt (6)

we need to calculate

Az(s, t) =
µ0
2π
I0

∫ ∞
0

sin [ω(t−
√
s2 + z2/c)]√

s2 + z2
dz . (7)

We can use the wavenumber k = 2π/λ and the relation ω/c = k to write the above as

Az(s, t) =
µ0
2π
I0

∫ ∞
0

sin [ωt− k
√
s2 + z2]√

s2 + z2
dz . (8)

The trigonometric relation sin (α− β) = sinα cosβ − cosα sinβ makes the calculation
manageable and results in two integrals that can be reduced to standard form.

Az(s, t) =
µ0I0
2π

(
sin (ωt)

∫ ∞
0

cos [k
√
s2 + z2]√

s2 + z2
dz − cos (ωt)

∫ ∞
0

sin [k
√
s2 + z2]√

s2 + z2
dz

)
. (9)

In an ideal world we would throw the two similar integrals at Mathematica and wait
for the answer. Unfortunately, we need to play with a couple of substitutions before this
approach nets a result. The first trick is to realize that the argument of the trig functions
can be made simple by the change of variables:

y =
√
s2 + z2 , z =

√
y2 − s2 ,

dz√
s2 + z2

=
dy√
y2 − s2

(10)

This is a smart move, since now we have

Az(s, t) =
µ0I0
2π

(
sin (ωt)

∫ ∞
s

cos (ky)√
y2 − s2

dy − cos (ωt)

∫ ∞
s

sin (ky)√
y2 − s2

dy

)
, (11)

where we also implemented the appropriate lower integration boundary change. The in-
tegrals have an integrable singularity at that boundary. A further small step, namely the
substitution y = s x with dy = s dx turns the integrals into standard forms which are
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known representations of two Bessel functions. Mathematica will simplify these integrals
properly.

Az(s, t) =
µ0I0
2π

(
sin (ωt)

∫ ∞
1

cos [(ks)x]√
x2 − 1

dx− cos (ωt)

∫ ∞
1

sin [(ks)x]√
x2 − 1

dx

)
. (12)

Our main result for the subsection becomes

Az(s, t) = −µ0I0
4

(sin (ωt)Y0(ks) + cos (ωt) J0(ks)) . (13)

This is a useful result for various reasons. For us, the main point is that Mathematica
knows properties of these functions (such as taking a derivative). Another reason is that
we can let Mathematica verify that the wave equation for Az(s, t) is satisfied by (13) on the
basis of the fact that the equation becomes closely related to Bessel’s differential equation.
Rather than going via the differential equation route (which is typically done in advanced
textbooks) we helped Mathematica solve the integral, or alternatively, we could have found
the integrals in a table, such as Gradshteyn and Ryzhik (they use J0 for one integral, but
call the other one N0 instead of Y0). The beauty of the approach is that you got exposure
to small parts of the theoretical physics toolbox. The main purpose of our exercise, will be,
however to connect to the idea of retardation! This is implied in the wave equation solution,
but practical experience usually comes from the integral (1) from which we started.

1.3. The fields Ez and Bϕ and their interpretation. The electric field is related very
simply to Az given in (13). Evaluation of (2) gives:

Ez(s, t) =
µ0I0ω

4
(cos (ωt)Y0(ks)− sin (ωt) J0(ks)) . (14)

We apply (3) to find the magnetic field (note how the chain rule yields a factor of k, and
that the prime indicates the derivative maps):

Bϕ(s, t) =
µ0I0k

4

(
sin (ωt)Y ′0(ks) + cos (ωt) J ′0(ks)

)
. (15)

The derivatives generate an index shift from 0 to 1, and a sign change. We also make the
replacement k = ω/c. Thus,

Bϕ(s, t) = −µ0I0ω
4 c

(sin (ωt)Y1(ks) + cos (ωt) J1(ks)) . (16)

In this form, it is apparent that the magnetic field is suppressed compared to the electric
field by a factor of c. The comparison of the electric field (14) and the magnetic field (16)
makes it clear that the phase relation between these fields may be complicated. It simpli-
fies only for large values of k s, when the Bessel functions relate to simple trigonometric
functions.

To graph Ez(s, t) in comparison with the magnetic field we show cBϕ(s, t) in order to
have numbers that can use the same ordinate axis. We indicate in Fig. 1 the Mathematica
code that defines the fields, chooses values for the frequency and the other parameters,
and the actual plots over one period in time. In the first plot, for distance s0 = 2λ the
fields appear to be out of phase. Note, however, that for a radially (in s) outgoing wave,
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In[330]:= Clear["Global`*"]

In[332]:= Ez = Cos[ω t] BesselY[0, k s] - Sin[ω t] BesselJ[0, k s];

In[334]:= cBφ = -Sin[ω t] BesselY[1, k s] - Cos[ω t] BesselJ[1, k s];

In[339]:= f = 1000 × 10^6; (* 1 Gigahertz *)
ω = 2 π f;
c = 3 × 10^8;
λ = c  f;
k = 2 π / λ;

In[343]:= PLe = Plot[Ez /. s -> 2 λ, {t, 0, 2 π / ω}, PlotStyle → Red];
PLb = Plot[cBφ /. s -> 2 λ, {t, 0, 2 π / ω}, PlotStyle → Blue];
Show[PLe, PLb]

Out[345]=
2.×10-10 4.×10-10 6.×10-10 8.×10-10 1.×10-9
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In[355]:= PLe = Plot[Ez /. s -> λ / 20, {t, 0, 2 π / ω}, PlotStyle → Red];
PLb = Plot[cBφ /. s -> λ / 20, {t, 0, 2 π / ω}, PlotStyle → Blue];
Show[PLe, PLb, PlotRange → All]

Out[357]=
2.×10-10 4.×10-10 6.×10-10 8.×10-10 1.×10-9
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Figure 1. Traces of the functions Ez(s0, t) and cBϕ(s0, t) for one period
of oscillation, and for two particular choices of distance s from the filament,
namely s0 = 2λ in the first plot, and s0 = 0.05λ in the second. Ez is in red,
while cBϕ is in blue. Note that the wavelength can be large for radio waves,
i.e., a small fraction of λ may correspond to a sizeable distance, but for the
present choice of f = 1 GHz it is short. We have taken out the pre-factors
in (14) and (16) to go easy on the y-scale.
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ẑ×ϕ̂ = −ŝ, i.e., an electric field pointing along −ẑ combined with a magnetic field pointing

along ϕ̂ results in an outward propagation direction ~k = kŝ. Thus, we consider the electric
and magnetic fields to be in phase in this case.

Close to the wire (at fractions of the wavelength λ) things are complicated. We observe
that, (i) the amplitude of cBϕ exceeds that of Ez; (ii) the phase relation is messy; (iii)
the amplitude is larger for smaller values of s0 than for larger distances from the wire. It
is worth mentioning that the choice of frequency does not matter for the plots, since the
observation points are chosen as multiples of the wavelength λ. One would just obtain a
change on the time axis. The strength of the fields does depend on ω = 2πf , however, the
pre-factor that was dropped for plotting is given in (14) and (16) and shows proportionality
to the AC frequency. In the next subsection it will be shown how the radiated power
depends on ω.

One question worth asking is: ‘what is the role of retardation?’ Could one evaluate
the vector potential in the quasi-static approximation? The answer is that the infinite-
wire problem cannot be solved quasi-statically. The fact that as one goes further out in
z that there are times at which the current is opposite in direction, and this leads to
cancellations which make the integral converge. In the quasi-static approximation there is
no dependence on k, and one obtains a logarithmically divergent result (as a function of
wire length). In cases where the current is turned on at some time (e.g., t = 0), such as
in Example 10.2 (Gr4e), the z-integral acquires a finite boundary, since at some far-away
distance the retarded time becomes zero. In our present example, however, the AC current
was chosen to exist for all times.

1.4. The Poynting vector, its time average, and radiated power. The flow of power
is described by the time average of the quantity

~S = ~E × ~H =
1

µ0
~E × ~B . (17)

Based on our previous considerations we have only a radially outward component at large
distances s >> λ, viz.,

Ss(s, t) = −Ez(s, t)Bϕ(s, t) . (18)

The Bessel functions have known asymptotic expansions at large argument k s. Com-
bining the electric and magnetic fields in (18) results in two terms that are proportional
to cos (ωt) sin (ωt) which are irrelevant after the time average is introduced, and cos2 (ωt)
and sin2 (ωt) terms which both average to one half. Thus,

〈Ss〉 =
µ0I

2
0

16c
ω2 1

2
(Y0(ks)J1(ks)− Y1(ks)J0(ks)) . (19)

In the asymptotic region the term in brackets simplifies, and

〈Ss〉 →
µ0I

2
0

16πc

ω2

ks
for s >> λ . (20)

To obtain the average power flow through a cylinder mantle at large radius s >> λ we
perform an area integral. Noting that the area vector for the cylinder mantle points in the
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same direction as ~S, namely along ŝ we obtain

〈P 〉 = 〈Ss〉2πsZ , (21)

where Z is the chosen cylinder height to calculate the power. We also replace k = 2π/λ,
and find

〈P 〉 =
µ0I

2
0

16πc
ω2λZ , (22)

A dimensional analysis shows that this is indeed a power. Without the chosen height Z
one obtains power/unit height.

This final result can be compared to the average power radiated by a finite electric dipole
(ED) that has charge flowing between z = +d/2 and z = −d/2 with initial charge q0 (in
Gr4e this result is obtained as (11.22)):

〈PED〉 =
µ0q

2
0

12πc
ω4d2 . (23)

Here the fourth power of ω appears, since the current amplitude I0 = q0ω. For the charge
sloshing hence and forth between z = ±d/2 the geometry is different, the asymptotic
surface through which the radiation passes is a sphere, but the radiation pattern is donut
shaped and maximizes at polar angle θ = π/2. The result is obtained in the λ >> d limit.

Another point of comparison is the Larmor formula for an accelerated point charge
(APC) (which moves slowly compared to the speed of light c). This result can be obtained
from the ED radiation case by considering the electric dipole moment of an oscillating

single point charge q displaced from the origin by position ~d(t). For details, see Example
11.2 in Gr4e.

PAPC =
µ0q

2a2

6πc
(24)

Observe how in this result the factors of length squared and inverse time to the fourth arise
through the square of the acceleration of the point charge.

1.5. Wave equation for Az. We close the circle by demonstrating that indeed the result
(13) for Az(s, t) does satisfy the wave equation, to which (1) from which we started is a
formal solution. The Laplacian reduces to a single terms (due to the absence of dependence
on ϕ and z), and the equation we should verify reads

1

c2
∂2Az

∂t2
=

1

s

∂

∂s

(
s
∂Az

∂s

)
. (25)

The result is demonstrated in Fig. 2. The pre-factor is omitted, since the partial differential
equation is homogeneous, i.e., constants can be multiplied without destroying the solution.

In addition we show some solutions of (13) for a few times as a function of s on the scale
of a few wavelengths. In Fig. 3 it is shown that the combination of two different types of
Bessel functions (regular and irregular at the origin, i.e., J0 and Y0 respectively) allows to
produce a vector potential Az which can be (weakly) singular at the origin. The Bessel
functions allow to have oscillating behaviour modulated by an amplitude that decreases
with argument.
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In[604]:= Az = Sin[ω t] BesselY[0, k s] + Cos[ω t] BesselJ[0, k s];

In[611]:= LHS = D[Az, {t, 2}]  c^2 /. ω → k c // FullSimplify

Out[611]= -k2 BesselJ[0, k s] Cos[c k t] + BesselY[0, k s] Sin[c k t]

In[612]:= RHS = D[s D[Az, s], s] / s /. ω → k c // FullSimplify

Out[612]= -k2 BesselJ[0, k s] Cos[c k t] + BesselY[0, k s] Sin[c k t]

In[613]:= LHS - RHS

Out[613]= 0

Figure 2. Verification in Mathematica that the solution (13) for the Carte-
sian z-component of the vector potential, Az(s, t) does indeed satisfy the
wave equation.

In[7]:= f = 1000 × 10^6; (* 1 Gigahertz *)
ω = 2 π f;
c = 3 × 10^8;
λ = c  f;
k = 2 π / λ;

In[20]:= Plot[{Az /. {t → π / 4}, Az /. {t → π / 3}, Az /. {t → 5 π / 6}},
{s, 0, 3 λ}, PlotStyle → {Red, Blue, Green}]

Out[20]=
0.2 0.4 0.6 0.8
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Figure 3. Plots of Az(s, tj) for three times tj .


