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Climate change favors weather conditions conducive to wildland fires. The
intensity and frequency of forest fires are increasing, and fire seasons are
lengthening. Exposure of human populations to smoke emitted by these fires
increases, thereby contributing to airborne pollution through the emission of gas
and particulate matter (PM). The adverse health outcomes associated with
wildland fire exposure represent an important burden on the economies and
health systems of societies. Even though cardiovascular diseases (CVDs) are the
main of cause of the global burden of diseases attributable to PM exposure, it
remains difficult to show reliable associations between exposure to wildland fire
smoke and cardiovascular disease risk in population-based studies. Optimal health
requires a resilient and adaptable network of small blood vessels, namely, the
microvasculature. Often alterations of this microvasculature precede the
occurrence of adverse health outcomes, including CVD. Biomarkers of
microvascular health could then represent possible markers for the early
detection of poor cardiovascular outcomes. This review aims to synthesize the
current literature to gauge whether assessing the microvasculature can better
estimate the cardiovascular impact of wildland fires.
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1 Introduction

Wildland fires are a major threat to human life. They adversely impact the environment,
our health, and our economies. Worldwide estimates predict that global warming will
generate more fire-prone areas in boreal and temperate regions. Wildland fires in these areas
will become more frequent, larger, and more severe, leading to more damage and destruction
(Bowman et al, 2020; Touma et al, 2021; Senande-Rivera, Insua-Costa, and Miguez-Macho,
2022). In recent years, some of the worst wildland fire seasons were reported all across the
globe, with massive fires raging in Australia, in North America, around the Mediterranean
Basin, in the Amazon Rainforest, and in the Siberian Boreal Forest (Lewis, 2020; Mega, 2020;
Witze, 2020). In North America, including Eastern Canada (Canadian Shield and Hudson
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Bay), the length of the wildland fire season has increased by almost
19% over the last 35 years (Jain et al., 2018). If climate change and
global warming certainly play a key role in this evolution of wildland
fires (frequency, size, and severity), human factors must be
acknowledged too. This was well highlighted in a recent
communication from the Royal Society (Santin and Doerr, 2022):
Population growth across North America increases the overall
surface areas where human development intersects with wildland
or vegetative fuels, thereby increasing odds of wildland fire smoke
exposure to inhabitants (Peterson et al., 2021). Arson and accidental
ignitions are mostly involved in highly populated areas (Balch et al,
2017). These risks can also be exacerbated by drastic fire suppression
policies that aimed to subtract wildland fires from our ecosystems
even though wildland fires contribute to their rejuvenation cycle.
This can result in an excessive accumulation of biomass fuels (North
et al, 2015).

Until recently, articles retrieved using search engines from new
media database (i.e., google news, CBS, CBC, CNN and Reuters)
with the keywords “wildland fire” AND “health” often focus on the
immediate risks associated with wildland fires, including
information about fire forecasts, injuries and casualties, losses
and associated financial costs, firefighting activity, wildlife impact,
and remodeled landscapes (Weber, 2020; CBS13/CNN, 2020;
Canadian Red Cross, 2023; Hill, 2020). A few articles reported
the short-term impact on health of chemical hazards acutely
released in the air during wildland fires, having mostly an
emphasis on the increased vulnerability to respiratory diseases
such as asthma or more recently flu and COVID-19 (McFall-
Johnsen, 2020a; McFall-Johnsen, 2020b; Kozlov, 2021). The long-
term consequences of wildland fire smoke exposure remain even less
documented. Long-term exposure studies have in fact essentially
focused on the increased risk of developing cancer in professional
firefighters (Asher-Schapiro, and Sherfinski, 2021; Kozlov, 2021). In
the aftermath of Canadian wildland fires of the Spring and early
Summer 2023, news media started discussing more massively the
short-term impact on health of chemical hazards acutely released in
the air during wildland fires (Christensen, 2023; Gibbens and
McKeever, 2023; Lapid, 2023; Margaux, 2023; Migliaccio, 2023).
Scientific blogs have also updated their information reporting what
acute and adverse effects of wildland fire exposure are (K. Miller,
2023). These news media articles address the short-term health
impact of wildland fire smoke, mostly reporting the exacerbations of
respiratory symptoms and increased risks to adverse cardiovascular
events.

Obviously, inhaled chemical pollutants can lodge in the
respiratory tract, eventually reaching the lung alveoli at the
deepest (Oberdörster, 1995; Guttenberg et al, 2016). The World
Health Organization refers to particulate matters (PM) as a
“common proxy indicator for outdoor air pollution”. PM2.5 and
ultrafine particulate matters (UFP) with diameters respectively
inferior or equal to 2.5 and 0.1 µm represent the smallest
pollutants in size. Conversely to larger PM (as PM10) and other
chemicals that will remain in the respiratory system, PM2.5 and UFP
are small enough to penetrate the blood stream by passing through
the lung alveolo-capillary barrier (WHO’s Air Quality and Health
Unit, 2022). Subsequently, they can interact with the endothelium,
the cellular lining found in our blood vessels and cardiac cavities,
and we can then question their impact on cardiovascular health.

This question is supported by the fact that cardiovascular disease
(CVD) account for about 50% of the global burden posed by PM
exposure, representing nearly sixty-one millions of disability-
adjusted life years (DALYs) lost in 2019 (‘GBD Compare | IHME
Viz Hub’ 2021). In the context of wildland fires, PM levels increase
in the immediate vicinity of fires and also up to thousands of
kilometers away from the fire center (Meng et al, 2019; Larsen
et al, 2020; Matz et al, 2020; Schneider et al, 2021). In Canada
between 2013 and 2018, PM originated from wildland fires in the
Western and Northern ends of the continent impacted population in
Central and Eastern Canada, supporting the notion of a long-range
transport of wildland fire related PM.

Despite these facts, only a few recent news outlets and media
release have highlighted the role that chemicals and particularly PM
might play in increasing cardiovascular events (e.g., heart attacks) in
response to an acute exposure to wildland fire smokes (Kozlov, 2021;
Gibbens and McKeever, 2023; Lapid, 2023; Margaux, 2023;
Migliaccio, 2023). Short-term exposure to wildland fire smoke
seems to be a precipitating cause of adverse cardiovascular events
in at-risk populations (Chen et al, 2021). Nonetheless, discrepancy
exists between these studies and could be attributed to many factors:
the dose exposure to PM (concentration x duration), the type of
burned biomass, the use of different outcome measurements (Chen
et al, 2021). Interestingly, most epidemiological studies examining
the relationship between PM exposure during wildland fires and
CVD use outcome measurements that are often late markers of
cardiovascular conditions with a long prodromal phase, for example,
hospital admissions for heart failure, myocardial infarction,
pulmonary embolism, stroke. These conditions often share
atherosclerosis as a common underlying cause, a pathological and
aging process of the vessels developing over decades. Hence,
developing effective measures to protect population from smoke
exposure during wildland fire seems difficult (Hano et al, 2020;
Marfori et al, 2020; Xu et al, 2020; Peterson et al., 2021).

Another important observation from these studies is the
potential role played by the microvasculature. Indeed,
populations with microvascular dysfunction might be more
vulnerable to adverse cardiovascular outcomes in response to an
exposure to wildland or biomass fire smoke. Whereas larger blood
vessels (arteries, veins and venules) constitute the macrovasculature,
arterioles and capillaries represent the microvasculature and the vast
majority of our blood vessels. The microvasculature plays key roles
in maintaining our cardiovascular health (Sörensen et al, 2016;
Wagenmakers et al, 2016; Augustin and Koh, 2017; Stehouwer,
2018; Alam et al, 2019). Alterations of the microvasculature often
precedes more adverse cardiovascular outcomes with macrovascular
and cardiac dysfunction (Anderson et al, 2011; Lee et al, 2012;
Stehouwer, 2018; van Sloten et al, 2020; Loai et al, 2022).
Microvascular biomarkers that would allow an early detection of
possible cardiovascular risks, when adverse effects are still reversible,
could therefore represent a more suitable alternative to indicators of
later CVD.

This review analyses the current literature to ascertain whether
the microvascular perspective could be beneficial for the early
detection of alterations in cardiovascular health during exposure
to wildland fire smoke. The first section of this review (see 2.0) will
determine if there is any association between microvascular
alterations and cardiovascular outcomes after wildland fires based
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on epidemiological research. The second section of this review (See
3.0) will examine whether smoke components from wildland fires or
anthropologic biomass burning impact the microvasculature.
Finally, the last section (See 4.0) will identify how the remaining
gaps of knowledge could be addressed to ascertain the value of
microvascular biomarkers for early detection of the cardiovascular
risk posed by wildland fire smoke.

2 What evidence do population-based
studies provide regarding the impact of
wildland fire on the microvasculature
and cardiovascular outcome?

As reviewed in (Soteriades et al, 2011; Chen et al, 2021; Reid et al,
2016; Cascio, 2018), adverse cardiovascular outcomesmight bemore
frequent when wildland fires occur. Yet, many studies failed to
demonstrate any strong relationships between PM exposure and
cardiovascular risk for populations who live either far or at
proximity from wildland fires (Analitis, Georgiadis, and
Katsouyanni, 2012; Delfino et al, 2009; Hanigan, Johnston, and
Morgan, 2008; Alman et al, 2016; Henderson et al, 2011; Liu et al,
2017; Reid et al, 2016). These equivocal results may arise from the
difficulty to clearly establish the exact dose of PM a population is
exposed to in the event of a wildland fire or during the entire fire
season. It could also indicate that the outcomes measured are too
broad to optimally assess the cardiovascular risk. Nonetheless, and
noteworthy, positive association emerges more clearly in studies
using cardiovascular pathologies associated with microvascular

dysfunctions (e.g., diabetes or heart failure) as outcomes to test
the relationship between wildland fire smoke exposure and
cardiovascular risk (Figure 1). Non-invasive assessments of the
microvasculature have emerged as innovative tools to stratify the
cardiovascular risk at a population level, and this could be applied to
wildland fires to better assess their risk for cardiovascular health.

2.1 Air pollution from wildland fires and
biomass burning in the general population:
Impact on cardiovascular mortality and
medical consultations

It remains difficult to demonstrate a strong positive relationship
between cardiovascular mortality and exposure to PM during
wildland fire season. In the Greater Athens Area between
1998 and 2004, medium and large wildland fires (greater than
1 × 106 m2 of burnt forest) were positively associated with
elevated cardiovascular mortality (ICD9, 390–459) during the fire
and over the following 48 h (Analitis, Georgiadis, and Katsouyanni,
2012), but this increase in mortality was not directly associated with
PM10 exposure (Analitis, Georgiadis, and Katsouyanni, 2012). In
Finland, 20 episodes of outdoor pollution due to long-range PM2.5

produced by biomass burning were reported in the metropolitan
area of Helsinki between 2001 and 2010 (Kollanus et al, 2016).
Although not statistically significant (p = 0.054), the outdoor
concentration of PM2.5 was positively associated with an
increased cardiovascular mortality in all ages (Kollanus et al,
2016). When analyzing the impact of wildland fires in

FIGURE 1
Impact of wildland fires-related PM on cardiovascular health. Population-based studies suggest that PM originating from wildland fires might more
severely impact individuals with microvascular vulnerability. Created with BioRender.com.
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Washington State, Doubleday and colleagues did not note
significant changes in the odds of dying from cardiovascular
disease on the first day of wildland fire exposure (Doubleday
et al, 2020).

Analyzing the impact of wildland fires and biomass burning on
medical consultations for cardiovascular events remains also largely
inconclusive. When assessing wildland fire exposure based on the
smoke density, medium and dense smoke significantly increased the
odds of admission to emergency departments for cardiovascular and
cerebrovascular diseases in Californian adults during the wildland
fire season in 2015 (Wettstein et al, 2022). In Brazil, Ye and
colleagues estimated that any rise of PM2.5 by 10 μg/m3 could
increase admissions for cardiovascular conditions by 10% 24 h
following the start of wildland fires (Ye et al, 2021). Yet, other
studies did not report any positive association between PM2.5 and
PM10 exposure and hospital admission due to CVD in the general
population (Hanigan, Johnston, and Morgan, 2008; Kollanus et al,
2016; Mahsin, Cabaj, and Saini, 2021; Alman et al, 2016; J. C; Liu
et al, 2017; Johnston et al, 2014; 2007). In Helsinki, Finland, long-
range PM2.5 levels observed during vegetation fires were not related
to any change in hospital admissions due to CVD. During the
1996–2005 fire seasons in Darwin, Australia, daily hospital
admission due to CVD were not associated with PM10 estimates
on the day of admission and up to 3 days pre-admission (Hanigan,
Johnston, and Morgan, 2008). Similar observations were made in
Australia in Sydney, Wollongong, and Newcastle for the
1996–2007 period, and in Western regions of North America
(British Columbia and California) during Summer 2003. During
fire seasons across various settings, PM2.5 or/and PM10 levels were
not related to hospital admission or physician visits due to overall
CVD in the general population (Delfino et al, 2009; Henderson et al,
2011; Martin et al, 2013; Johnston et al, 2014; Hutchinson et al, 2018;
Doubleday et al, 2020). Yet, some of these studies reported positive
association with respiratory diseases admission (Hutchinson et al,
2018; Doubleday et al, 2020).

The above studies did not identify any clear relationship between
exposure to PM from wildland fires or biomass burning and medical
consultations for cardiovascular pathologies or cardiovascular
mortality in the general population.

2.2 Impact of air pollution fromwildland fires
and biomass burning in patients presenting
microvascular vulnerability

When analyzing specific cardiovascular conditions and age
groups, it appears that certain populations with microvascular
dysfunction might be more vulnerable to adverse cardiovascular
outcomes. Older individuals and patients with cardio-metabolic
diseases, such as diabetes, heart failure, and ischemic heart
diseases, were more likely to seek medical assistance
following exposure to wildland or biomass fire smoke
(Delfino et al, 2009; Henderson et al, 2011; Haikerwal et al,
2015; Yao et al, 2020; Mahsin, Cabaj, and Saini, 2021; Wettstein
et al, 2022). It is noteworthy that these cardio-metabolic
diseases are associated with microvascular alterations that
can alter whole-body performance. Heart failure and
ischemic heart disease present functional alterations of the

heart and skeletal muscle microvasculature (D’Amario, Borovac,
and Crea, 2021; Kitzman et al, 2014; D’Amario et al, 2019; Mehta
et al, 2022; van de Hoef et al, 2020). Patients unable to maintain a
functional microvasculature in the skeletal muscle and cardiac
tissues have a greater intolerance to performing daily activities,
that could worsen symptoms such as dyspnea and fatigue that are
hallmarks of heart failure and main causes of hospitalizations
(Kitzman et al, 2014; Del Buono et al, 2019; Mahfouz, Gouda,
and Abdelhamid, 2020). As individuals age, microvascular
dysfunctions in striated cardiac and skeletal muscles will limit
blood flow distribution to these tissues during physical exertion,
making them more susceptible to ischemic pathologies (Bearden,
2006; A. J; LeBlanc and Hoying, 2016).

Multiple studies have reported an increased risk to seek medical
care due to acute myocardial infarction, ischemic heart disease, and
congestive heart failure in the event of wildland fire-related PM
exposure (Johnston et al, 2014; 2007; Rappold A. G. et al, 2011;
Rappold et al, 2012; Haikerwal et al, 2015; Yao et al, 2020; Mahsin,
Cabaj, and Saini, 2021; Wettstein et al, 2022). The risk appears to be
even higher for older individuals (Delfino et al, 2009; Johnston et al,
2014). For example, during the Fall 2003 Californian wildland fire
season, PM2.5 exposure was positively associated with
hospitalization when examining admissions due to congestive
heart failure (+11.3%, all age groups) for individuals aged
45–99 years (Delfino et al, 2009). In Australia, during bush fires,
PM exposure led to higher odds of emergency department
admissions due to ischemic heart diseases in Darwin’s aboriginal
population and due to heart failure in Sydney’s inhabitants
(Johnston et al, 2014; 2007). During the wildland fire season of
Summer 2006–2007 in Victoria (Australia), any increase of PM2.5 by
9 μg/m3 increased the risk of hospital admission due to ischemic
heart disease and acute myocardial infarction (Haikerwal et al,
2015). Similar observations were made during the fire seasons of
2010–2015 in British Columbia (Canada) where increased odds of
myocardial infarction (+19% after 17 h) and ischemic heart disease
(+7% after 28 h) following exposure to PM2.5 were reported (Yao
et al, 2020). An increased risk of diabetic outcomes
(i.e., hyperglycemia or hypoglycemia) (+20%) was also observed
48 h post-exposure (Yao et al, 2020). Some of the studies cited above
indicate that older individuals aged 65 years and older had a higher
risk for hospital admission due to CVD (Haikerwal et al, 2015;
Mahsin, Cabaj, and Saini, 2021;Wettstein et al, 2022). Every increase
in PM2.5 by 10 μg/m3 increased the risk of physician visits due to
congestive heart failure and ischemic heart disease by 11% and 19%,
respectively, for seniors aged 65 years and older. To add, seniors
with diabetes had an increased risk of cardiovascular morbidity
(+30%), post fire (Mahsin, Cabaj, and Saini, 2021). In California,
older individuals (65+) had a greater risk of admission due to
cardiovascular and cerebrovascular diseases when the density of
wildfire smoke increased above 10.5 μg/m3 of PM2.5 (Wettstein et al,
2022). While the association between PM exposure and
cardiovascular risk in the general population remains uncertain,
exposure to wildland fire smoke appears to be linked with worse
cardiovascular outcomes in older individuals and in patients with
other comorbid cardiometabolic diseases (i.e., heart failure, ischemic
heart diseases and diabetes). Since microvascular dysfunction
worsens cardiometabolic symptoms, it may be postulated that
exposure to wildland fire smoke may directly trigger additional
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microvascular dysfunction thereby exacerbating pre-existing
cardiovascular morbidities.

2.3 Direct evidence of the impact of wildland
fires or biomass burning exposure on the
microvasculature in the general population

A limited number of studies have investigated whether outdoor
air pollution generated by wildland fires could directly impact the
microvasculature. Yet, a few studies have non-invasively evaluated
the microvasculature, corroborating the notion that biomass
burning could indeed impact the microvasculature, both
functionally and structurally. In vivo imaging of the retina allows
for a non-invasive assessment of microvascular alterations. Changes
in the geometry of the retinal microvasculature has indeed emerged
as a valuable tool to stratify cardiovascular risk. A reduced diameter
of the central retinal arterioles (CRAE), a greater diameter of the
central retinal venules (CRVE) and a lower arteriolar-to-venular
ratio (AVR = CRAE/CRVE) are associated with adverse
cardiovascular events and cardiovascular risk factors (Mutlu et al,
2016; Seidelmann et al, 2016; Rijks et al, 2018). Retinal
microvasculature measurement has been used to assess the
impact of urban airborne pollution on microvascular function
among individuals. This approach has shown that long-term and
short-term exposure to black carbon, PM2.5 and PM10, was linked
with a decreased central retinal arteriole diameter among adults and
children (Adar et al, 2010; Louwies et al, 2013; Provost et al, 2017).
Thus, urban air pollution alters the geometry of the retinal
microvasculature, potentially suggesting an increased
cardiovascular risk. Among children aged 4–6 years, prenatal and
early childhood exposure to PM2.5 and nitrogen oxide (NOx) was
associated with widening of the retinal venular and arterial
diameters (Luyten et al, 2020). Using a similar approach, Korsiak
and colleagues assessed the short-term impact (same day to 3 weeks
of lag exposure) of outdoor pollution from biomass burning on the
retinal microvasculature in children aged 4–12 years living in rural
areas (Korsiak et al, 2021). PM2.5 levels and an index of the presence
of oxidant gases (Ox) that combines a measure of ozone and
nitrogen oxide (O3 and NOx) to assess outdoor pollution. Any
increase of Ox by 10 ppm over a period of 7 days was associated with
a decrease in retinal arteriole diameter by 2.63 μm (−1.44% of the
total arteriolar diameter). Yet, PM2.5 exposure due to biomass
burning only impacted the diameter of retinal arterioles when Ox
levels were high (Korsiak et al, 2021), suggesting that the interaction
between oxidant gases and PM elicits greater impact on the
microvasculature. Further investigations will better delineate
whether structural changes observed in children’s retinal
microvasculature are good predictors of future cardiovascular risks.

Another approach has evaluated whether residential pollution
alters cutaneousmicrovascular functions. Measuring changes in skin
blood flow is a promising non-invasive tool to evaluate the
microvascular function, and to indirectly assess cardiovascular
health. In fact, Witters and colleagues assessed the impact of
residential air pollution on the cutaneous microvascular function
of children aged 4–6 years using local heat-mediated vasodilation
(Witters et al, 2021). In response to local skin heating, vasodilation
of the skin’s microvasculature increases local blood flow as measured

by laser doppler. Prenatal exposure to black carbon, PM2.5 or PM10

of residential origin during the last trimester of pregnancy lowered
the cutaneous microvascular function in children aged 4–6 years
(Witters et al, 2021). Yet, post-natal exposure had no impact on the
microvascular function and did not modify the association between
prenatal exposure and microvascular function (Witters et al, 2021).
To our knowledge, the impact of PM exposure on skin
microvascular function has not been investigated in the specific
context of wildland or biomass burning.

As conclusion of this first section, future studies combining an
accurate dosimetry of PM with a non-invasive assessment of the
microvascular function would contribute to better evaluate the
cardiovascular risk of wildland fires PM exposure.

3 Could chemicals present in wildland
fire smoke impact the microvascular
endothelium?

3.1 Overview of the microvasculature

The vasculature is a vast system of blood vessels composed of
arteries, arterioles, capillaries, venules, and veins. All these vessels
are primarily composed of a layer of endothelial cells forming the
endothelium. Arterioles and capillaries represent together the
microvasculature whereas larger diameters vessels constitute the
macrovasculature. Arterioles are located downstream of resistance
arteries. In a simplistic representation, arterioles can be seen as
vascular tubes made of endothelial cells and supported by vascular
smooth muscle cells (VSMCs) that confer to arterioles their
vasomotricity (vasoconstriction and vasodilation). Such
vasomotricity allows arterioles to play a central role in
controlling peripheral vascular resistance and blood pressure
(Jackson, 2021). For example, in the skeletal muscle, which
represent about 40% of the body mass, arterioles contributes for
about 50% of tissue vascular resistance (Fronek and Zweifach, 1975).
These arterioles largely determines the blood flow into downstream
capillaries, which are the most abundant and smallest blood vessels
in the human body. Capillaries are constituted of a single layer of
endothelial cells, supported by mural cells such as pericytes. In a
healthy adult, the capillary endothelium with a surface of 600 m2

represents more than 85% of the total vascular surface
(Wagenmakers et al, 2016). The capillary endothelium supports
key homeostatic functions: delivery of oxygen and nutrients to
tissues, capacity of tissues to respond to infection, metabolic
tissular adaptation, thermoregulation, endocrine communication,
tissue regeneration after injury (Augustin and Koh, 2017). The
microvascular endothelium found in arterioles and capillaries
also senses local vasodilatory molecules present in the tissue,
relaying the information to the arteriolar VSMCs. The
coordinated action of the microvascular endothelium and smooth
muscle tissue regulates the process of arteriolar vasodilation
ensuring an appropriate blood supply to the tissue as well as an
optimal control of blood pressure (Murrant and Sarelius, 2015;
Dora, 2016; Wagenmakers et al, 2016). From this standpoint, it is
obvious to comprehend why health, and particularly cardiovascular
health, requires an optimal microvasculature (Figure 3). Recent
studies have suggested that atmospheric pollution and PM could
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dysregulate blood pressure. Wen and colleagues have reported a
positive association between atmospheric pollution and diastolic
blood pressure in post-menopausal women (Wen et al, 2023). And
Marrone and colleagues have described a potential positive
correlation with systolic blood pressure in adolescents (Marrone
et al, 2023). Based on these observations, studying whether exposure
to wildland fire smoke has a short-term or long-term impact on the
microvasculature has become more critical than ever.

3.2 Presence of inhaled pollutants in the
blood circulation and interaction with the
endothelium

To impact the endothelium, and more particularly the
microvascular endothelium, wildland fire pollutants must enter
the blood stream (Figure 2). Biomass burning and wildland fire
emit smoke into the atmosphere that contain a complex mixture of
chemicals under the form of gases, volatile organic and semi-
volatiles compounds (VOC and SVOC), polycyclic hydrocarbons,
and particulate matter (Barboni et al, 2011; 2010; Romagnoli et al,
2014) (Baxter et al, 2014; Navarro et al, 2019; 2017; Cherry et al,
2021). The main pollutants released are carbon dioxide (CO2),
carbon monoxide (CO), nitrogen oxides (NOx), and aerosols
(i.e., particulate matter). Aerosols consist of solid particles, such
as soot, with a diameter less than or equal to 1 µm (UFP and PM1),
and liquid particles in the form of tar, with a diameter less than or
equal to 2.5 µm (PM2.5). Aerosols are molecules with long-range
transportability that can be inhaled during breathing and absorbed
through skin deposition during or in the aftermath of a wildland fire
(Meng et al, 2019; Cherry et al, 2021).

As previously mentioned, the smallest PM (PM2.5 and UFP) can
penetrate through the lung alveolo-capillary barrier into the blood
stream (Figure 2). Once in the circulation, these PM promote
systemic inflammation, affecting both circulating immune cells
and endothelial cells (Pope et al, 2016; Finch et al, 2019). Limited
studies have specifically investigated whether PM2.5 and UFP
directly interact with the microvascular endothelium. Yet, a few
studies support this notion. First, inhaled nanoparticles were found
to circulate in the blood stream and accumulate in diseased arteries

in both preclinical rodent models and in human subjects (Miller
et al, 2017; Raftis and Miller, 2019; Nemmar et al, 2002). A few
studies have also shown that after inhalation, nanoparticles circulate
in the microvascular beds of multiple organs. For example, inhaled
silica nanoparticles were found in capillaries from lung, lymph
nodes, spleen, and kidney tissues from male F344 rats
(Guttenberg et al, 2016). Additionally, an accumulation of PM2.5

originating from organophosphate flame retardants was observed in
the heart, brain, and skeletal muscle tissues from C57B6J mice (M.
Chen et al, 2020). The endothelia in these tissues are continuous. To
reach tissue cells, these circulating pollutants must therefore interact
with and then cross the microvascular endothelium to penetrate and
accumulate into tissues. The interaction between these circulating
PM and endothelial cells could also modify the communication
between endothelial cells and VSMCs and alter the arteriolar
vasomotricity with consequences on the blood flow feeding
downstream capillaries (Figure 3). The impact of PM on the
vasomotricy might vary depending on the size of PM inhaled.
Using calibrated titanium oxide PM, Nurkiewicz et colleagues
reported that the microvascular impairment (i.e., capacity of the
arterioles to dilate) increases as the size of PM decreases (Nurkiewicz
et al, 2011). Once in these tissues, PM can promote cell damages and
oxidative stress that trigger inflammation (Farina et al, 2019;
Hameed et al, 2022). This can feed a vicious circle where tissue
inflammation could promote further microvascular dysfunction
(Nurkiewicz et al, 2011; 2008). Circulating PM could also interact
with the capillary endothelium to impair the capacity of the capillary
bed to remodel or grow through angiogenesis, the formation of new
capillaries from pre-existing ones (Abe et al, 1990; Capitão and
Soares, 2016; Fuchs et al, 2017; Shi and Vanhoutte, 2017) (Figure 3).
Pope and colleagues have analyzed the impact of urban-related PM
and UFP on the blood composition (Pope et al, 2016). They reported
that PM2.5 concentration correlated positively with the number of
circulating endothelial microparticle, a marker of endothelial cell
damage, and negatively with the concentration of circulating
cytokines known to promote angiogenesis (the formation of new
capillaries from existing ones). To date, it remains unknown
whether PM from wildland fire origin have similar impact on the
microvasculature. While it remains unclear if a similar effect (tissue
accumulation) prevails with PM specifically released from wildland

FIGURE 2
Wildland fire-related PM can enter the bloodstream. Being the smallest pollutants, PM2.5 and ultrafine PM (UFP) penetrate the alveolo-capillary
barrier and then enter the bloodstream. Created with BioRender.com.
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fire smoke, these findings suggest that ultrafine and fine PM from
airborne pollution could circulate through the microvasculature,
interact with microvascular endothelia, and accumulate in various
tissues (Figure 3). If confirmed, these PM-induced microvascular
alterations could have important repercussions on cardiovascular
health since arteriolar vasomotricity and capillary angiogenesis
could de facto support the restoration of blood flow and tissue
repair post-ischemic events (e.g., myocardial infarction, peripheral
arterial disease). Indeed the alteration of these microvascular
processes can participate to the pathogenesis and progression of
CVD (Lähteenvuo and Rosenzweig, 2012; Crea, Montone, and
Rinaldi, 2021; D’Amario, Borovac, and Crea, 2021; Dean et al,
2015; Annex and Cooke, 2021; Coker et al, 2019; Chen et al, 2016).

3.3 Assessing the impact of wildland fire
smoke on the microvascular smooth muscle

Limited literature exists regarding the impact of PM from
wildland fire smoke on vascular smooth muscle cells (VSMCs).
As reviewed byMing and colleagues, the impact of PM2.5 on VSMCs
has been mainly investigated for particles originating from cigarette
smoke, diesel exhaust, or urban airborne pollution but not wildland
fires and other biomass burning (Ming et al, 2022). In addition, most
of these studies have used smooth muscle cells from macrovascular
origin (i.e., isolated from aorta) with an interest in studying whether
PM could promote atherosclerosis through the activation of smooth

muscle hypertrophy (Chang et al, 2017; Wan et al., 2018; Ho et al,
2019; Gu et al, 2021; Ho et al, 2021; Tian et al, 2021; Ju et al, 2022;
Ming et al, 2022; Bao et al, 2023). Similarly to cigarette smoke-
related PM, particles from urban pollution increase mitogenic and
hypertrophic signals (e.g., PDGFR-β, JAK2/STAT3) in
macrovascular VSMCs, promoting the thickening of the media,
an contributing to atherosclerosis and calcification in the aorta (Bao
et al, 2023; Schroeter et al, 2008; R; Li et al, 2013). Exposure to PM
from cigarette smoke and urban airborne pollution also induce an
important oxidative stress in these macrovascular VSMCs,
enhancing pro-inflammatory signals (i.e., NFκB), the expression
of metalloproteinase (MMPs), cell proliferation and migration
(Chang et al, 2017; Ho et al, 2021; Ju et al, 2022). These studies
indicate that PM can significantly alter the phenotype of VSMCs.
PM exposure has been reported to significantly impair the
microvascular function, with frequent report of endothelial
dysfunction (Pope et al, 2016; Nurkiewicz et al, 2004; A; LeBlanc
et al, 2009). Yet, nanoparticles formed of titanium oxide altered the
endothelial function in sub-epicardial arterioles without apparent
changes in the sensitivity of the vascular smooth muscle to nitric
oxide, the most potent local vasodilator (LeBlanc et al, 2009). We
could therefore hypothesize that PM produced by wildland fires
could have a similar impact of the phenotype of microvascular
VSMCs. To our knowledge, there is no study that has investigated
the impact of PM from wildland fire smoke on VSMCs from
microvascular origin. It remains unknown what the impact of
wildland fire related PM on the capacity of arterioles to dilate

FIGURE 3
Circulating PM interacts with macro- and micro-vascular endothelia potentially impacting multiple tissues. Once in the bloodstream, PM2.5 and
ultrafine PM (UFP) might impair the biology of macro- and micro-endothelial cells with consequences on vessel integrity (arterioles, capillaries),
angiogenic capacity, and inflammation. Themicrovasculature of various tissues and organs (kidneys, cardiac and skeletal muscle, brain, skin, retina) could
be altered with consequences on disease progression and functionality (cognitive aging, fatigue, worsening of cardiac conditions). Non-invasive
assessments of microvasculature could represent a new avenue for cardiovascular risk assessment in the context of wildland fire smoke exposure.
Created with BioRender.com.
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could be. This highlight the need to perform further investigation on
whether wildland fire smoke could alter the control of blood flow by
damaging the microvascular smooth muscle.

3.4 Assessing in vitro the impact of wildland
fire smoke pollutants on microvascular
endothelial cells

Despite the importance of the microvasculature in
cardiovascular health, Microvascular Endothelial Cells (MECs)
remain largely understudied as an in vitro model to investigate
the effect of airborne pollutants on endothelial cells. The most
frequently used endothelial cells to investigate the toxicity of
nanoparticles and air pollution are macrovascular Human
Umbilical Vein Endothelial Cells (HUVECs) (Ding et al, 2020; S;
Chen et al, 2017; He et al, 2021; Setyawati et al, 2015; Jung et al, 2022;
Su et al, 2020; Hu et al, 2017; Y; Liu et al, 2021; Wang et al, 2017),
which are phenotypically different from MECs, and therefore might
respond differently to stressors (Lang et al, 2003; Suphasiriroj,
Mikami, and Sato, 2013; Lau et al, 2021). This might hold true
for PM, as nanotoxicity is known to vary depending on the
phenotype and shape of endothelial cells (Setyawati et al, 2015).
When comparing the impact of urban PM2.5 on HUVECs and
human microvascular ECs (HMECs), Chen and colleagues reported
a decrease in cell survival, an increase in intracellular inflammation,
and reduced angiogenic capacity for high concentrations of PM2.5

(100–800 μg/mL, 24 h treatment) in both microvascular (HMECs)
and macrovascular (HUVECs) endothelial cells (Chen et al, 2017).
Yet, the effects of PM2.5 were less severe in HMECs. In another
study, exposure to PM10 (5–50 μg/mL for 24 h) altered cell
permeability in human brain MECs (HBMECs) and led to the
acquisition of pro-senescent and pro-inflammatory profiles with
high levels of ICAM and vascular adhesion molecule-1 (VCAM) in
these cells (Park et al, 2021).

In spite of the limitation of being of macrovascular and venous
origin, HUVECs have nonetheless proven useful to assess chemicals
toxicity (Cao et al, 2017; Cao, 2018). Nanoparticles and PM2.5 can
enter HUVECs through endocytosis and micropinocytosis and can
be released by exocytosis (Cao, 2018; Su et al, 2020). The mechanism
of cell internationalization varies depending on the chemical
composition of the PM2.5. For example, metal-rich PM2.5 enter
HUVECs through micropinocytosis; PAH-rich PM2.5 require
clathrin-dependent endocytosis, and water-soluble PM2.5 are
internalized through a caveolin-dependent endocytosis (Su et al,
2020). Once inside the cells, PM2.5 can alter the cytoskeleton
structure and reduce HUVECs survival via apoptosis in a time
and dose dependent manner (Wang et al, 2017; Su et al, 2020).
Beyond inducing cell apoptosis, PM2.5 can also alter endothelial cell
functions such as cell permeability, inflammation, and angiogenesis.
In a tridimensional culture model, HUVECs exposed to PM2.5

showed an increased expression of the pro-inflammatory markers
interleukin-1 (IL-1), Nuclear Factor Kappa-light-chain-enhancer of
activated B cells (NF-κB), and intercellular adhesion molecule-1
(ICAM-1) (Y. Li et al, 2019). PM2.5 composed of organic carbon and
element carbon were shown to increase vascular permeability in
HUVECs (Long et al, 2020).

PM2.5 exposure can also slow down the process of autophagy
and increase activity of the tumor suppressor gene p53 (TP53) in
HUVECs (Liu et al, 2021; Wang et al, 2017). Autophagy is an
important intracellular process that identifies and degrades
unnecessary or dysfunctional proteins and organelles.
Autophagy has protective functions against cytotoxic actions
of microenvironmental stressors promoted by metabolic risk
factors (e.g., high glucose; oxidized low density protein, ox-
LDL) (Jiang, 2016). An overactivation of tumor suppressor
protein 53 (TP53) in the endothelium can challenge
cardiovascular homeostasis, making arteries more prone to
atherosclerosis (Warboys et al, 2014). Angiogenesis, the
formation of new capillaries from pre-existing ones, supports
the expansion of the microvascular network to restore oxygen
and nutrient supply to tissues during cardiac hypertrophy and
after post-ischemic events (e.g., myocardial infarction, peripheral
arterial diseases) (Li, Zhao, and Zhu, 2022; Annex and Cooke,
2021; Dorn, 2007; Sano et al, 2007). Some of the identified cellular
effects of PM2.5 could alter the angiogenic process. For example,
previous reports indicate that an increase in TP53 during
ischemia limits angiogenesis during cardiac hypertrophy and
in preclinical model of peripheral arterial diseases (Gogiraju
et al, 2015; Pfaff et al, 2018).

Two toxicogenomic studies bring further evidence that PM2.5

could alter the angiogenic capacity of HUVECs (Hu et al, 2017; Jung
et al, 2022). After 24 h of exposure to 50 μg/mL of urban airborne
PM2.5, 501 genes were differentially regulated, 177 genes were
downregulated and 417 genes were upregulated (Hu et al, 2017).
In the second study, 24 h of exposure to PM2.5 originated from
gasoline engine exhaustion (59.0 μg/mL) changed the expression of
1081 genes associated with cardiovascular system morphogenesis,
vascular tube formation, receptor signaling (cytokine-related
signaling), or cell adhesion (Jung et al, 2022). Both studies
suggest that PM2.5 exposure could in fact alter important
processes for angiogenesis such as morphogenesis, vascular tube
formation, receptor signaling. Yet, many of the top differentially
regulated genes differs between the two studies (Hu et al, 2017; Jung
et al, 2022). The observed discrepancy might result from the
difference in chemical compositions of the PM2.5. One study
used PM2.5 originated for gasoline exhaustion (100%) (Jung et al,
2022), while the second versus has PM2.5 of mixed origin from both
coal combustion and vehicle exhaustion (Hu et al, 2017; Y; Liu et al,
2021). Altogether, these endothelial cell alterations induced by PM2.5

and other pollutant nanoparticles could make the vasculature more
vulnerable to cardiovascular risk factors and therefore, prone to
atherosclerosis development.

Finally, if the observations made in HUVECs were all verified in
MECs, it would be tangible that airborne PM could alter the biology
of MECs (Figure 3). In conclusion, these in vitro studies have
limitations: 1) PM with different chemical characteristics may
elicit different responses in ECs. 2) The most extensively used
endothelial cells to study air pollution are macrovascular
HUVECs, with limited information on microvascular endothelial
cells. 3) MECs have themselves a broad range of phenotypes
depending on their tissue of origin, potentially eliciting different
responses to environmental stressors (Aird, 2007a; Augustin and
Koh, 2017).
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3.5 Direct in vivo and ex vivo evidence that
wildland fire smoke could impact the
microvasculature

As discussed in the above section, in vitro studies have shown
that PM could impair the structure and function of cultured
endothelial cells. Yet, limited evidence exists regarding the direct
impact of exposure to wildland fire smoke on the microvasculature
per se (i.e., arterioles and capillaries). A few pre-clinical studies have
investigated the impact of airborne pollution from vehicle exhaust
and biomass burning on the mouse microvasculature in vivo,
suggesting that exposure to wildland fire smoke or air pollution
secondary to residential fire overhaul activity post residential fires
could induce microvascular alterations (Gainey et al, 2018; Adivi
et al, 2021; Scieszka et al, 2021).

Mice exposed to firefighting overhauling activity after a fire that
modelled residential fire presented significant changes in the genes
expressed within the pulmonary tissue (Gainey et al, 2018). While
the authors essentially focused on identifying genes associated with
lung carcinogenesis, the KEGG gene ontology analysis also revealed
that exposure to the overhaul environment led to a significant over-
representation of genes regulated by the Forkhead box O (FoxO)
pathway (Gainey et al, 2018). We and others have shown that FoxO
signaling pathway is crucial to microvascular homeostasis, where an
increased activity of FoxO reduces the capacity of tissues to initiate
angiogenesis in response to ischemia or in presence of
cardiovascular risk factors (Paik et al, 2007; Milkiewicz et al,
2011; Roudier et al, 2013; Nwadozi et al, 2016; Rudnicki et al,
2018). Further investigations would need to confirm whether
exposure to wildland fire smoke could elicit similar effects on the
FoxO signaling pathway and impact the capacity of the
microvasculature to remodel through angiogenesis.

In another study, Kim and colleagues have exposed mice to PM
collected in the vicinity of peat bog fires that took place in the summer
2008 in the rural counties of North Carolina (Kim et al, 2014).
Interestingly, the impact of these peat burning events on
cardiovascular health was also investigated at the level of the general
population by other research groups, and some positive associations
between smoke and haze density and the risk of hospital admission for
congestive heart failure were identified (Rappold A. G. et al, 2011;
Rappold et al, 2012). In their animal study, Kim and colleagues used the
Langendorff model to assess the impact of PM exposure on cardiac
function. The Langedorff model enables a controlled ex vivo perfusion
of the heart where ischemia-reperfusion is performed to mimic acute
myocardial infarction. It has been previously demonstrated that
microvascular alterations were part of the underlying mechanisms
leading to ventricular dysfunction and myocardial infarction in the
Langendorff model (Hollander et al, 2016). Using this model, Kim and
colleagues have shown that female mice exposed to 154 ng/cm2 of
inhaled ultrafine PM (≤0.1 μm) extracted from peat burning sites had
greater infarct size and left ventricular dysfunction post-ischemia when
compared to control mice (Kim et al, 2014). These results suggest that
inhaling UFP and PM from peat burning smoke could increase the
vulnerability of murine hearts to cardiac dysfunction following
myocardial infarction, potentially due to greater microvascular
injuries (Kim et al, 2014).

The impact of air pollution on the microvasculature has also been
investigated at the cerebral level. The brain microvasculature is

unique; astroglial cells surround endothelial cells to form a very
tight barrier where the exchange of molecules is strictly controlled
to protect neurons for toxic substances (Augustin and Koh, 2017).
Exposure to vehicle exhaust PM altered the brain’s microvasculature
integrity in Apo E−/− mice highly prone to atherosclerosis
(Oppenheim et al, 2013; Adivi et al, 2021). The acquisition of a
pro-inflammatory profile, an increased microvascular permeability
and the associated changes in the expression of tight junction proteins
could support the loss of brain microvascular integrity (Oppenheim
et al, 2013; Adivi et al, 2021). Exposure to PM from wildland fire
origin might also impact the brain microvasculature. Indeed, using a
mobile laboratory, Scieszka and colleagues exposed healthy mice to
concentrated PM2.5 (4 h/day over 20 days) from smoke of wildland
fires naturally occurring in California, Arizona, and Washington
states (Scieszka et al, 2021). In this study, mice were exposed to an
average concentration of 104 μg/m3 of PM2.5. Animal exposed to these
wildland fire related PM2.5 had an increased deposition of amyloid β
(Aβ-42), a hallmark of cerebrovascular aging, an infiltration of
peripheral immune cells, and a shift in the inflammatory profile of
the cerebral microvascular endothelium (Scieszka et al, 2021). These
changes were also associated to a greater coverage of capillaries by
astroglial cells. Thus, PM2.5 originating from wildland fire might
trigger neuroinflammation and an adverse remodeling of the
microvascular blood brain barrier. Further investigations would be
required to determine whether these alterations contribute to
cerebrovascular aging (Figure 3).

The mentioned studies have investigated the acute or short-term
effects of exposure to airborne pollutants from structural fires,
biomass burning, and wildland fires. Further studies are however
needed to elucidate whether repeated exposure to wildland fire
smoke could initiate maladaptive responses of the
microvasculature, potentially contributing to or worsening
airborne pollution-driven CVD.

4 Remaining gaps of knowledge and
future directions

Current evidence suggests that inhaled PM2.5 and UFP
originated from biomass burning or wildland fire smokes could
cross the gas-blood barrier to reach microvascular endothelia. Yet,
gaps of knowledge remain, and further studies are required to
delineate their biological impact on the microvasculature.

First, the chemical composition and size of PM varies depending
on the fuel consumed (e.g., biomass vs. gasoline) and the conditions
of combustion (Lighty, Veranth, and Sarofim, 2000). To date, most
toxicology-based in vitro and animal-based in vivo studies have
investigated the impact of PM from traffic pollution and vehicle
exhaust, with only a few studies focusing on PM derived from
wildland fire smoke or biomass burning. Most in vitro studies also
utilized high-to-very high doses of PM to evaluate their toxicity,
often far from doses that the general population would be
exposed to.

Second, most in vitro studies were performed on macrovascular
HUVECs, which are phenotypically very different from
microvascular MECs (Aird, 2007a; 2007b; Nakato et al, 2019). In
mammalians, the vast majority of the endothelia is microvascular
(Wagenmakers et al, 2016). The response of MECs to wildland fire-
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related PM might be considerably different than the responses
induced by urban-related PM measured in HUVECs (S. Chen
et al, 2017). It appears now crucial to design in vitro studies that
examine the toxicity of wildland fire-related PM directly on MECs.

Third, very limited data are available regarding the impact of PM
exposure from wildland fires on the microvasculature per se in
animal models. To our knowledge, only two studies have exposed
mice to PM naturally collected from forest and peat wildfires (Kim
et al, 2014; Scieszka et al, 2021).

Fourth, population-based studies revealed that individuals with
conditions or diseases associated to microvascular alterations are
more inclined to seek medical assistance due to the worsening of
their health status (Johnston et al, 2014; 2007; Rappold A. G. et al,
2011; Rappold et al, 2012; Haikerwal et al, 2015; Yao et al, 2020;
Mahsin, Cabaj, and Saini, 2021; Wettstein et al, 2022). Non-invasive
assessments of the microvasculature emerge as innovative tools to
stratify the cardiovascular risk at a population level. Despite this
emergence of these new approaches (Adar et al, 2010; Louwies et al,
2013; Provost et al, 2017; Rijks et al, 2018; Luyten et al, 2020; Korsiak
et al, 2021; Witters et al, 2021), the number of studies that
investigated the direct impact of outdoor airborne pollution on
human microvasculature in the context of wildland fires and
biomass burning are insufficient.

In the future, it will be crucial that population-based studies
inform the design of preclinical experimental studies to mimic real-
world exposure as close as possible. To better determine the
vulnerability of microvascular endothelium to wildland fire
smoke exposure, experiments must take in consideration the
doses of circulating PM, the chemical formulation of PM and
their bioavailability in real-world conditions, and the duration of
exposure (Lewtas, 2007; Thepnuan et al, 2020). Pre-clinical and
clinical studies might help ascertaining whether microvascular
alterations are accountable for the adverse cardiovascular
outcomes observed in vulnerable populations. Verifying whether
wildland fire-related PM directly causes microvascular alterations in
these populations requires more intensive work. Undeniably, more
population-based studies directly assessing the impact of wildland
fire smoke on the microvasculature are needed. Yet, due to the
phenotypic differences that exist within the microvasculature, it
appears crucial to confirm whether non-invasive assessments of the
cutaneous and retinal microvascular beds could correlate with other
microvascular impairment observed in other tissues or organs after
exposure to PM originated from wildland fire smoke. Careful design
of pre-clinical animal studies where the impact of wildland fire PM is
tested in multiple microvascular beds (e.g., brain, skeletal muscle,
cardiac tissue, retina, and skin) might help in bridging these current
gaps of knowledge.

5 Conclusive remarks

In a retrospective analysis of the wildland fire seasons 2013,
2015 and 2017–2018 from published Canadian studies (Crouse Dan
L. et al, 2012; Stieb et al, 2020), Matz and colleagues estimated the
impact on Canadians’ health due to short-term and long term-

exposure to wildfire-PM2.5 (Matz et al, 2020). They concluded that,
each year, there were 50–240 premature deaths due to acute health
impact of wildland fire related PM2.5, and 570 to 2,500 premature
deaths due to chronic health impact. This represents a significant
burden on the Canadian health system estimated to cost $410M-
$1.8B for the acute impact and $4.3B-$19B for chronic health
impact. Most of these health-related costs were attributable to
respiratory and cardiovascular conditions (Matz et al, 2020).
With the anticipated expansion in size, severity, and number of
wildland fires and the predicted lengthening of the fire seasons
globally (Bowman et al, 2020; Touma et al, 2021; Senande-Rivera,
Insua-Costa, andMiguez-Macho, 2022), better tools are required for
cardiovascular health risk assessment. Exploring the biology of the
microvasculature in this context could open new avenues for earlier
and better detection of adverse cardiovascular outcomes posed by
exposure to wildland fire smoke. This will improve knowledge
regarding underlying mechanisms of wildland fires’ role in health
and will pave the way for better risk management and prevention.
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Glossary

Aβ-42 Amyloid β peptide 42

Apo E-/- mice Atherosclerosis-prone apolipoprotein E-deficient mice

CHF Congestive heart failure

C57B6J mice

C57 Black 6 Jackson laboratory mice

CO2 Carbon dioxide

CO Carbon monoxide

DALYs Disability-adjusted life years

EC Endothelial cells

ED Emergency Department

F344 rats Fisher 344 rats

FoxO Forkhead box O protein

GO Gene ontology

H2O Water

HBMEC Human brain microvascular endothelial cell

HMEC Human microvascular endothelial cell

HUVEC Human umbilical vein endothelial cell

ICAM-1 Intercellular adhesion molecule-1

ICD9 International classification of diseases version 9

IL-1 Interleukin-1

KEGG Kyoto Encyclopedia of Genes and Genomes

MEC Microvascular endothelial cell

NOx Nitrogen oxide

NF-κB Nuclear Factor Kappa-light-chain-enhancer of activated B cells

O3 Ozone

Ox Oxidant capacity of combined O3 and NOx

ox-LDL Oxidized low density protein

PAH Polycyclic aromatic hydrocarbon

PM Particulate matter

PTSD Post-traumatic stress disorders

RHI Reactive hyperemia index

sICAM soluble ICAM

sVCAM soluble vascular cell adhesion molecule 1

TP53 Tumor suppressor protein 53

UFP Ultrafine particulate matter
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