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Evaluation of a smartphone accelerometer system for measuring nonlinear 
dynamics during treadmill walking: Concurrent validity and 
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A B S T R A C T   

The accelerometers embedded within smartphones may be a promising tool to capture gait patterns outside the 
laboratory and for extended periods of time. The current study evaluated the agreement and reliability of gait 
measures derived from a smartphone accelerometer system, compared to reference motion capture and foot-
switch systems during treadmill walking. Seventeen healthy young adults visited the laboratory on three separate 
days and completed three 8-minute treadmill walking trials, during each visit, at their preferred walking speed. 
The inter-stride interval series was calculated as the time difference between consecutive right heel contacts, 
located within the signals of the smartphone accelerometer, motion capture, and footswitch systems. The inter- 
stride interval series was used to estimate common linear gait measures and nonlinear measures, including 
fractal scaling index, approximate entropy, and sample entropy. Bland Altman plots with 95% limits of agree-
ment and intraclass correlation coefficients assessed agreement and reliability, respectively. The smartphone 
system was found to be within the acceptable limits of agreement when compared to either reference system. The 
intraclass correlation coefficients values revealed moderate-to-excellent reliability for the smartphone system, 
with greater reliability found for linear compared to nonlinear measures and were similar to both reference 
systems, except for the fractal scaling index. These findings suggest the smartphone accelerometer system is a 
valid and reliable method for estimating linear and nonlinear gait measures during treadmill walking.   

1. Introduction 

Gait analysis is traditionally performed using linear measures such as 
the mean or standard deviation (SD) of the measure of interest (e.g., SD 
of stride time). However, evidence suggests that use of nonlinear ap-
proaches to analysis of gait dynamics (i.e., changes in stride-to-stride 
fluctuations) can provide greater sensitivity for detecting age-related 
changes associated with fall-risk and pathological gait patterns (Haus-
dorff et al., 1997). Nonlinear analysis provides a group of measures that 
are used to quantify the structure of gait patterns over time. For 
example, the detrended fluctuation analysis (DFA), which provides the 
fractal scaling index (FSI) as a measure of statistical persistence, esti-
mates the degree to which a stride interval is correlated with previous 
and later stride intervals over different time scales (Hausdorff et al., 
1996). Other common nonlinear measures include approximate entropy 
(ApEn) and sample entropy (SaEn), which quantify the statistical 

regularity of a time series; with higher values suggesting greater gait 
adaptability (Arif et al., 2004) defined as altering the typical stepping 
pattern to accommodate imposed constraints (Balasubramanian et al., 
2014). 

Nonlinear gait analysis requires hundreds (>200) of continuous 
strides, thereby restricting data collection to a controlled setting, while 
walking on a motorized treadmill, and recording with a research-grade 
reference system (Rhea et al., 2014; Kiriella et al., 2020). However, 
research-grade reference systems are expensive, limited to the labora-
tory, and require trained personnel for operation. With advancements in 
smartphones, researchers can access the built-in inertial sensors to 
monitor gait outside the laboratory for extended periods of time (Lugade 
et al., 2021). Although previous studies have validated smartphone 
accelerometer (SPAcc) systems for measuring traditional, spa-
tial–temporal gait measures during overground walking (Silsupadol 
et al., 2017; Yang et al., 2012), only one study has assessed the use of 
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nonlinear analysis; Hammoud et al. (2015) reported statistical persis-
tence derived using a SPAcc. The aim of this study is to evaluate the 
agreement and reliability of linear and nonlinear gait measures collected 
with a SPAcc during treadmill walking. 

2. Methods 

2.1. Participants 

Seventeen adults (8F/9M; mean ± SD; age:24.7 ± 3.7 years, 
height:1.73 ± 0.1 m, weight:73.1 ± 14.2 kg, belt speed:1.26 ± 0.2 m/s) 
participated. Sample size was calculated a priori using an α = 0.05, β =
0.8, and an expected intraclass correlation coefficient (ICC) between 0.4 
and 0.5 (Raffalt et al., 2018) providing n = 11–17 (Bujang and Baharum, 
2017). Participants provided written informed consent prior to partici-
pation. The university research ethics board granted approval for the 
study (certificate#2019–091). Inclusion criteria included: adults be-
tween 18 and 35 years old, ability to perform repeated 10-minute 
walking bouts, and no neurological or musculoskeletal conditions or 
injuries within the past six months that might affect gait. 

2.2. Equipment and set-up 

Participants wore comfortable walking shoes, full length pants with 
front pockets, and a t-shirt. A seven-camera motion capture system 
(Vicon, CO, USA), considered the reference motion capture system 
(MoCap), recorded movement of a single reflective marker affixed to the 
right heel of the shoe, using double-sided adhesive tape; sampling at 
100 Hz. A wireless force sensitive resistor (FSR) footswitch sensor (12.7 
mm round) (Delsys, MA, USA), affixed directly to the bottom of the right 
heel inside the shoe, with tape, considered the reference FSR system 
recorded the time of heel contact; sampling at 296 Hz. The FSR system 
had preset sampling rates, and the rate closest to that of the MoCap was 
selected. A Google Smartphone (Pixel 2, ROC), with a custom-built 
application accessing the embedded tri-axial accelerometer, was 
placed pointing downwards in the front right pants pocket and used as 
the SPAcc; sampling at 100 Hz. Participants walked on a motorized 
treadmill (Bodyguard Fitness, QC, Canada). The treadmill walking sur-
face was ~ 6 in. above the ground and was level with the floor. 

2.3. Protocol 

Participants visited the laboratory three times, each separated by at 
least 24 h and wore the same attire for each visit. The preferred walking 
speed (PWS) was determined for each participant using the protocol 
from Dingwell and Marin (2006). Participants performed a five-minute 
treadmill familiarization walking period, at their PWS, prior to data 
collection trials (Zeni and Higginson, 2010). Participants completed 
three 8-minute treadmill walking trials at their PWS (Pierrynowski et al., 
2005). During visits two and three, participants repeated the collection 
protocol while walking at their previously identified PWS. Each partic-
ipant completed nine trials. 

2.4. Data processing 

Data were processed using Matlab (R2021b, Mathworks Inc, MA, 
USA). Temporal alignment of the three independent systems is described 
in supplementary material A. The vertical axis acceleration data were 
used to determine SPAcc. SPAcc and FSR data were sample interpolated 
to 100 Hz to match the MoCap sampling rate. Afterwards, the gravity 
bias was removed from the SPAcc data, and signals were multiplied by 
− 1 to correct for the upside-down orientation. Two data streams were 
created for each system. One stream was kept in raw form for nonlinear 
measures calculations. To construct the second stream, used for linear 
measures calculations, the raw data were filtered using a fourth order 
low-pass Butterworth filter with cutoff frequencies selected based on a 
residual analysis approach (Fazlali et al., 2020). The MoCap, FSR, and 
SPAcc data were filtered with 6 Hz, 13 Hz, and 18 Hz cutoff frequencies, 
respectively. Each trial was truncated to 325 strides and the first 25 were 
discarded (Lindemann et al., 2008). The location of right heel contact 
(RHC) events within the signals of each system (Fig. 1) is described in 
supplementary material B. 

2.5. Dependent measures 

The inter-stride interval (ISI) was calculated for each system’s signal 
as the time difference between each RHC event and used as the ISI series 
for all measures: average ISI (xISI; ms), stride time SD, (STv; ms), stride 
time coefficient of variation (COV; %), FSI using DFA (Terrier and 
Dèriaz, 2012), ApEn, and SaEn. The entropy algorithms used the 
following parameter values: similarity criterion, r = 0.2, window length, 

Fig. 1. Representative plot of right heel contact locations in the signals recorded from the motion capture (MoCap), force-sensing resistor (FSR), and smartphone 
accelerometer (SPAcc) systems. The gray circles represent heel contact event locations. 
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Fig. 2. Bland Altman plots with 95% limits of agreement (LOA) for each dependent measure between each measurement system. The dashed black lines represent the 
95% LOA, the solid black line represents the bias, the black circles represent the average of all trials from each participant (n = 17). Compared to the motion capture 
(MoCap) system, the smartphone accelerometer (SPAcc) system revealed a slight negative bias for stride time variability, stride time coefficient of variation (CV), and 
sample entropy (SaEn) representing an overestimation of the SPAcc; a slight positive bias was found for mean inter-stride interval (xISI), fractal scaling index (FSI), 
and approximate entropy (ApEn). Compared to the footswitch (FSR) system, the SPAcc revealed a slight negative bias for all measures except for FSI, demonstrating 
the SPAcc, in general overestimates measures compared to FSR. 
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m = 2 (Richman and Moorman, 2000). 

2.6. Statistical analyses 

Statistical analyses were performed using JMP v.9.0 software (The 
SAS Institute, NC, USA). Bland-Altman (BA) plots with 95% limits of 
agreement (LOA) were constructed using the mean of all walking trials 
for each participant, for each system to assess agreement. The a priori 
defined acceptable LOAs for each measure are defined in supplementary 
material B. ICC(2,k = 3) assessed absolute agreement between each 
system (Hartmann et al., 2009). ICC(2,k = 3) also assessed the 
test–retest reliability of each system using the measures from each 
walking trial. ICC values of < 0.5, 0.5–0.75, 0.75–0.90, and > 0.90 were 
interpreted as poor, moderate, good, and excellent, respectively (Koo 
and Li, 2016). The standard error of measurement (SEM) and the min-
imal detectable change (MDC) were calculated for each system to 
quantify absolute reliability (magnitude of measured values spread 
around the true value) and the amount of change in order to detect a true 
difference across separate repeated measurements rather than mea-
surement error, respectively (Weir, 2005); lower MDC values indicate 
better measurement tool responsiveness. 

3. Results 

3.1. Validity 

The 95% LOA calculated for the SPAcc compared to either reference 
system, and between both reference systems, were found to be within 
the a priori defined acceptable LOA for all dependent measures (Fig. 2). 
With the exception of stride time COV, the LOA were narrower when the 
reference systems were compared to one another (Table 1). The ICCs 
revealed excellent agreement between the SPAcc and both reference 
systems (Table 1). 

3.2. Reliability 

Linear and nonlinear measures derived from SPAcc demonstrated 
moderate-to-excellent reliability (Table 2). The SPAcc revealed ICCs 
similar to both reference systems across all measures, except for FSI, 
which was lower for the SPAcc (0.73) compared to MoCap (0.81) and 
FSR (0.82) systems. The SEM and MDC values were similar across all 
systems, suggesting absolute reliability and measurement responsive-
ness of the SPAcc were similar to that of both reference systems 
(Table 2). 

4. Discussion 

The aim of this study was to evaluate the agreement and reliability of 
linear and nonlinear gait measures collected with a SPAcc during 
treadmill walking. The findings suggest the SPAcc is a valid and reliable 
method for estimating gait measures during treadmill walking, per-
forming similarly to that of research-grade equipment. 

The mean values for xISI across all systems were similar to previous 
treadmill walking research (Terrier and Dèriaz, 2011) and overground 
walking while using a smartphone (Proessl et al., 2018). Mean STv and 
COV derived from the SPAcc were lower compared to previous 
accelerometer-derived research during treadmill walking (Terrier and 
Dèriaz, 2011). Mean FSI values in this study were similar to those re-
ported by Terrier and Dèriaz (2011) while using an accelerometer 
affixed to the low back. The 95% LOA for FSI in the current study were 
narrower than the LOA reported by Kobsar et al. (2014) who compared 
an accelerometer to an FSR system during overground walking. How-
ever, methodological differences, such as signal filtering, overground 
walking, population recruited, and number of strides included, may 
have contributed to the differences in values between the accelerometer 
and SPAcc. The slight positive bias found for FSI compared to the other 
reference systems represents a slight underestimation of the SPAcc. 
These findings suggest a slight systematic adjustment may be required 

Table 1 
Mean (±SD) of linear and nonlinear measures derived from the signals of each system, along with bias, 95% limits of agreement (LOA), and absolute agreement (ICC(2, 
k)).  

Measure System Bias (95% Limits of Agreement) [ICC(2,k)] 

SPAcc MoCap FSR MoCap versus SPAcc FSR versus SPAcc MoCap versus FSR 

Mean Inter-Stride 
Interval (ms) 

1099.4 
(56.9) 

1101.4 
(56.8) 

1101.4 
(56.8) 

0.02 (− 0.90, 0.93) [1.00] − 0.02 (− 0.86, 0.83) [1.00] 0.03 (− 0.29, 0.35) [1.00] 

Stride Time Variability 
(ms) 

13.0 (1.6) 12.7 (1.6) 12.9 (1.8) − 0.25 (− 1.15, 0.66) [0.94] − 0.08 (− 1.27, 1.12) [0.94] − 0.17 (− 1.03, 0.69) [0.98] 

Coefficient of Variation 
of Stride Time (%) 

1.18 
(0.15) 

1.16 
(0.15) 

1.17 
(0.17) 

− 0.02 (− 0.10, 0.06) [0.94] − 0.01 (− 0.12, 0.10) [0.94] − 0.02 (− 0.10, 0.07) [0.98] 

Fractal Scaling Index 0.71 
(0.08) 

0.72 
(0.08) 

0.72 
(0.09) 

0.009 (− 0.023, 0.043) [0.96] 0.015 (− 0.022, 0.051) [0.93] − 0.005 (− 0.036, 0.026) [0.99] 

Approximate Entropy 1.24 
(0.05) 

1.25 
(0.05) 

1.24 
(0.05) 

0.004 (− 0.029, 0.036) [0.97] − 0.005 (− 0.041, 0.033) [0.96] 0.008 (− 0.021, 0.037) [0.96] 

Sample Entropy 1.43 
(0.15) 

1.41 
(0.15) 

1.40 
(0.15) 

− 0.003 (− 0.099, 0.094) [0.96] − 0.015 (− 0.110, 0.079) [0.95] 0.012 (− 0.080, 0.104) [0.97] 

Note: SPAcc = smartphone accelerometer system, MoCap = motion capture system, FSR = footswitch system, k = 3. Negative bias [MoCap - SPAcc; FSR - SPAcc; MoCap 
- FSR] represents an overestimation. 

Table 2 
Test-retest reliability (ICC), standard error of measurement (SEM), and minimal detectable change (MDC) results.   

SPAcc MoCap FSR 

Measure ICC(2,k) SEM MDC ICC(2,k) SEM MDC ICC(2,k) SEM MDC 

Mean Inter-Stride Interval (ms)  0.86 G  12.6  35.0  0.95 E  12.5  34.8  0.95 E  12.6  35.0 
Stride Time Variability (ms)  0.95 E  0.73  2.01  0.83 G  0.65  1.81  0.82 G  0.74  2.06 
Coefficient of Variation of ISI (%)  0.80 G  0.06  0.17  0.88 G  0.05  0.15  0.85 G  0.06  0.18 
Fractal Scaling Index  0.73 M  0.04  0.12  0.81 G  0.04  0.10  0.82 G  0.04  0.10 
Approximate Entropy  0.90 E  0.02  0.04  0.87 G  0.02  0.05  0.87 G  0.02  0.05 
Sample Entropy  0.86 G  0.06  0.16  0.89 G  0.05  0.14  0.88 G  0.05  0.15 

Note: M - moderate, G - good, E - excellent; k = 3; ISI = inter-stride interval. 
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when estimating the FSI using the SPAcc during treadmill walking. 
Mean SaEn (1.40–1.43) was found to be greater than mean ApEn 
(1.24–1.25) for all systems, which is as expected since SaEn does not 
count self matches and therefore yields values closer to randomness. The 
ICCs assessing agreement between the SPAcc, and reference systems 
were found to be similar to those reported by Kobsar et al. (2014) for xISI 
(1.00), STv (0.94), and FSI (0.95) while comparing an accelerometer to a 
FSR system. In general, better agreement was found between the SPAcc 
and MoCap systems, compared to the SPAcc and FSR system, while the 
two reference systems demonstrated the best agreement to one another. 

FSI demonstrated the lowest ICCs for all three systems. This is not 
surprising due to the sensitivity of nonlinear measures and the between- 
day design of the current study. Previous research on between-day 
reliability also suggests that linear measures exhibit high reliability 
(Stolze et al., 1998) while nonlinear measures reveal lower reliability 
(Ryan et al., 2021). For example, Raffalt et al. (2018), reported ICCs of 
~ 0.38 and ~ 0.6, for SaEn and FSI, respectively. Pierrynowski et al. 
(2005) also investigated the between-day reliability of FSI and reported 
an ICC of 0.82, calculated using three six-minute treadmill walking trials 
while recording the displacement of a right heel marker using a MoCap 
system to identify heel contact events. The current study used the same 
number of strides and trials, as recommended by Pierrynowski et al. 
(2005), to calculate FSI and found similar ICC values for both reference 
systems (MoCap = 0.81, FSR = 0.82), while the SPAcc revealed an ICC of 
0.73. Differences in agreement and reliability of the FSI between the 
reference systems and the SPAcc might be associated with the locations 
at which measurements were taken; at the right heel for the MoCap and 
FSR system, and at the pants pocket for the SPAcc. Any subtle differences 
in heel contact event locations used to generate the ISI series might be 
associated with sensor location. Further, to better simulate real-world 
useability of the smartphone, placement in the pocket was not fixed, 
allowing the device to move somewhat independently, also potentially 
affecting the agreement and reliability measures. Previous research 
suggests pocket tightness does not affect the estimation of linear gait 
measures using a smartphone (Manor et al., 2018), however, no studies 
have examined the potential impact on non-linear measures until now. 

Interestingly, the entropy measures were more reliable than FSI, 
suggesting entropy is not as sensitive to between-day differences or that 
sensor location is not a factor contributing to differences in between-day 
reliability, as may be the case for FSI. Additionally, perhaps the entropy 
algorithm itself is not as sensitive to subtle between-day differences. 
However, only one combination of entropy algorithm parameters was 
used. Future research should investigate the selection of different input 
parameters used to calculate entropy and the effect on between-day 
reliability. A limitation of this study is the absence of a defined con-
trol group for interpreting ApEn and SaEn values. 

The present study established the utility of a smartphone for esti-
mating gait dynamics among healthy young adults in a controlled 
environment; enabling future research for evaluating different adult 
populations (i.e., clinical) and in different settings (i.e., overground 
walking), however, more work must be done to establish these 
implications. 
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