Name: \qquad KEY Student ID: \qquad
There are three questions. You must complete all three. Ensure that you show your work (that is, equations, calculations and units). Excessive length is not encouraged.

Question One

Many multi-cellular organisms rely on internal pumps to provide nutrients and oxygen throughout their bodies. Gravity can be a counteracting force. As one example, consider a python lying horizontal on the grass versus climbing a tree, head-up. Snake lengths vary, but the heart is usually situated 0.25 of the total length behind the head for tree climbers. For non-tree
 climbers the heart is situated at about 0.37 of the total length. So, for a 10 -meter long tree-climbing snake, the heart is 2.5 meters behind the head. The blood pressure of a treeclimbing snake is about 10.5 kiloPascals.

Consider what happens when the snake slithers from a horizontal to a vertical orientation (head-up).

- Quantify and compare two strategies the snake could use when it starts to climb the tree: changing the work per heart beat (volume compression per pump cycle) or changing the heart beat rate. Is one strategy better than the other, or are they equivalent? Explain, showing your calculations.
- Would it matter whether the vascular system was a closed piping system (without an opening to the outer atmosphere) or open at some location (to allow some pressure equilibration between the vascular system and the outer atmosphere)? Explain.

Show your work with clarity.

Question Two

What is R (the gas constant)? Why is it available in a bewildering array of values (see constants handout)? Remember that Dr. Lew is not a physicist, and he believes that units are important.

Question Three

Acetylcholine is a crucial neurotransmitter in your
 'electrical system'. It is released at the pre-synaptic membrane, diffuses across the synaptic cleft and binds to acetylcholine receptor on the post-synaptic membrane, to cause the next neuron to fire electrical impulses. Assuming the diffusion coefficient is $4 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, how wide could the synapse gap be if acetylcholine must diffuse across the synaptic cleft in $10^{-5} \mathrm{sec}$?

Term Test key
Question One (120)
(Par tone)
In avertical position, the snake has to overcome gil. To do so, it can either change the volume compressed per heart beat, or increase the heart sate. ($3 / 10$) The two are related:

$$
\begin{equation*}
\text { Volume r'low }=\binom{\text { compressed }}{\text { volume }}\binom{\text { heart beat }}{\text { rate }} \tag{6/10}
\end{equation*}
$$

Increasing either will increase volume flow.
In biological reality, changing the heart chamber volume is difficult, while increasing heart beat rate is straightforward, and what a tree climbing snake will actually do

$$
\begin{aligned}
& \text { (Part Two) } \\
& \text { In a closed system, } \downarrow \text { downelowt }
\end{aligned}
$$

In an open system overcome atmospheric pressure, creating difficultus

A more detailed physical exploration of treeclimbing pythons was provided to gen on the course website/ and goes more details.
as a sample assignment

Term Test One Key
Question Two (120)
The gas constant "glues" together thermodynamic properties:

$$
\begin{equation*}
P S=n R T \text { or } P=R T C \tag{8/20}
\end{equation*}
$$

So, in part, the values of R depend upon the units you are using. As one example,
$\mathrm{m}^{2} \mathrm{~Pa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, liter atm mol ${ }^{-1} \mathrm{~K}^{-1}$, and cm^{3} bar mol $\mathrm{l}^{-1} \mathrm{~K}^{-1}$ are all (in state properties) UP mol ${ }^{-1} \mathrm{~K}^{-1}$.

More deeply, R can be expressed in $\frac{\text { Joule (ie., energy) }}{\text { mol K }}$
Are joules equivalent to $M^{3} \mathrm{~Pa}(J \cdot P)$?
Since a Pa is $\mathrm{N} / \mathrm{m}^{2} \ldots$

$$
m^{3} N / m^{2}=N \cdot M=\text { joule. }
$$

N.M is the work (or energy) done when applying one Newton of force through a distance of 1 m .

Term Test One key (120)
Question Three
To determine the maximal width of the synaptic cleft, we can use Einstein's relation

$$
D=\frac{1}{2} \frac{a^{2}}{\tau}
$$

Solving for the distance (Δ)

$$
\begin{gathered}
\Delta=\sqrt{2 D T} \quad d=\sqrt{6 D t} \\
\sqrt{(2)\left(4 \times 10^{-6} \frac{\mathrm{~cm}^{6}}{\text { sec }}\right)\left(10^{-5} \mathrm{sec}\right)} \\
\text { units }=\mathrm{cm} \quad \Delta=8.9 \times 10^{-6} \mathrm{~cm} \\
\text { or } 89 \mathrm{nM} \\
\text { (not very wide at all !) }
\end{gathered}
$$

A more detailed physical exploration of diffusion in an enclosed space was provided for you as a sample assignment (Diffusion assignment) on the course web site.

Logistic growth curve:

$$
N_{T}=\frac{K \bullet N_{0} \bullet e^{T / g}}{K+N_{0}\left(e^{T / g}-1\right)}
$$

carrying capacity

A cube has a surface area of $6 \cdot \mathrm{~L}^{2}$. Its volume is L^{3}. As long as the shape is constant, the ratio of suraface area to volume will always be $\left(6 \cdot L^{2}\right) / L^{3}$, or $6 / \mathrm{L}$.

For a sphere, the surface area is $4 \cdot \pi \cdot r^{2}$, and the volume is $\pi \cdot r^{3}$; the corresponding ratio of surface area to volume is $4 / \mathrm{r}$.

$\begin{array}{llll}\text { (area) } \mathrm{A}_{1}=6 \cdot \mathrm{~L}^{2} & \mathrm{~A}_{\mathrm{k}}=6 \cdot(\mathrm{k} \bullet \mathrm{L})^{2} & \mathrm{~A}_{\mathrm{k}}=6 \bullet \mathrm{k}^{2} \cdot \mathrm{~L}^{2} & \left(=\mathrm{k}^{2} \cdot \mathrm{~A}_{\mathrm{l}}\right) \\ (\text { volume }) \mathrm{V}_{1}=\mathrm{L}^{3} & \mathrm{~V}_{\mathrm{k}}=(\mathrm{k} \cdot \mathrm{L})^{3} & \mathrm{~V}_{\mathrm{k}}=\mathrm{k}^{3} \cdot \mathrm{~L}^{3} & \left(=\mathrm{k}^{3} \cdot \mathrm{~V}_{\mathrm{t}}\right)\end{array}$
The scaling coefficient is different for area $\left(\mathrm{k}^{2}\right)$ and for volume $\left(\mathrm{k}^{3}\right)$.
Heat conduction rates are defined by the relation:

$$
\mathrm{P}_{\text {cond }}=\mathrm{Q} / \mathrm{t}=\mathrm{k} \bullet \mathrm{~A} \bullet\left[\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}\right) / \mathrm{L}\right]
$$

where $\mathrm{P}_{\text {cond }}$ is the rate of conduction (transferred heat, Q , divided by time, t); k is the thermal conductivity; T_{a} and T_{b} are the temperatures of the two heat reservoirs a and b ; A is the area; and L is the distance. Thermal conductivities of water and air are about 0.6 and $0024 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, respectively.

Thermal radiation is defined by the relation:

$$
\mathrm{P}_{\mathrm{rad}}=\sigma \bullet \varepsilon \bullet \mathrm{A} \bullet \mathrm{~T}^{4}
$$

where $P_{r a d}$ is the rate of radiation; σ is the Stefan-Boltzmann constant $\left(5.6703 \cdot 10^{-8} \mathrm{~W}\right.$ $\mathrm{m}^{-2} \mathrm{~K}^{-4} ; \varepsilon$ is the emissivity (varies from 0 to 1 , where 1 is for a blackbody radiator); A is the area; and T is the temperature (in Kelvins). The net radiative emission or absorption will depend upon the difference in temperature:

$$
\mathrm{P}_{\text {net }}=\sigma \cdot \varepsilon \bullet \mathrm{A} \bullet\left(\mathrm{~T}_{\text {body }}^{4}-\mathrm{T}_{\text {ambient }}^{4}\right)
$$

compression $=\rho \bullet h \quad h_{\text {critical }}=\frac{42.4 \cdot 10^{6}\left(\mathrm{~N} \cdot \mathrm{~m}^{-2}\right) \cdot \frac{1(\mathrm{~kg}(\mathrm{f}))}{9.80665(\mathrm{~N})}}{436\left(\mathrm{~kg} \cdot \mathrm{~m}^{3}\right)}$

$$
F_{c r}=\frac{E \bullet I \bullet \pi^{2}}{L_{e f f}^{2}} \quad F_{c r}=\frac{E \cdot \frac{\pi \cdot r^{4}}{4} \cdot \pi^{2}}{(2 \bullet h)^{2}}, \text { and } F_{c r}=\rho \bullet \pi \bullet r^{2} \bullet h
$$

$$
\Psi_{w v}=\frac{R T}{\bar{V}_{w}} \ln \left(\frac{\% \text { relative humidity }}{100}\right)+\rho_{w} g h
$$

$$
v=\left(\frac{\Delta p}{l}\right)\left(\frac{1}{4 \bullet \eta}\right) R^{2} \quad \mathrm{~J}_{\mathrm{v}}=\left(\frac{\Delta \mathrm{p}}{1}\right)\left(\frac{\pi}{8 \bullet \eta}\right) \cdot R^{4}
$$

$$
\begin{aligned}
& J=-\frac{1}{2} \cdot \frac{\Delta^{2}}{\tau} \cdot \frac{d C}{d x} \quad \frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \\
& D=\frac{1}{2} \cdot \frac{\Delta^{2}}{\tau} \nabla v=u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \\
& \text { velocity vector } \\
& \text {-the notation grad } v \\
& \text { is sometimes used } \\
& \text { with velocity components, } \mathrm{u}, \mathrm{v} \text {, and } \mathrm{w} \text {, } \\
& \text { in the three dimensions, } \mathrm{x}, \mathrm{y} \text {, and } \mathrm{z} \text {. } \\
& J_{r}(a)=-D \cdot C_{0} \cdot 4 \cdot \pi \cdot a=I_{D}(\text { diffusive current }) \\
& \text { (units of mole } \mathrm{sec}^{-1} \text {) } \\
& \text { (mole cm }{ }^{-2} \mathrm{sec}^{-1} \text {) } \\
& I_{m}=4 \cdot \pi \cdot a^{2} \cdot \beta \text { (metabolic current) } \\
& \left(\mathrm{cm}^{2}\right) \quad \text { (units of mole } \mathrm{sec}^{-1} \text {) } \\
& P_{e}=\frac{2 \cdot a \cdot u}{D} \\
& \text { concentration gradient } \\
& Q=\frac{\Delta p}{l} \frac{\pi a^{4}}{8 \eta} \\
& \mu_{j}^{\text {liquid }}=\mu_{j}^{*}+R T \ln a_{j}+\overline{V_{j}} P+z_{j} F E+m_{j} g h \\
& \text { Fick's Second Law : } \\
& \text { (steady state) } \\
& C(r)=C_{0}\left(1-\frac{a}{r}\right) \quad \frac{\partial C}{\partial t}=D \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C}{\partial r}\right)=0 \\
& p_{o}(t)=e^{-\lambda} \quad p_{n}=e^{-\lambda T} \frac{(\lambda T)^{n}}{n!}=\frac{e^{-\mu} \mu^{k}}{k!}
\end{aligned}
$$

$\operatorname{Rotor}_{(\mathrm{n})}+\mathrm{mH}_{\text {outside }}^{+} \longleftrightarrow$ Rotor $_{(\mathrm{n}+1)}+\mathrm{m} \mathrm{H}_{\text {inside }}^{+}$

$$
\mathrm{ADP}+\mathrm{P}_{\mathrm{i}}+\mathrm{mH}_{\text {outside }}^{+} \longleftrightarrow \mathrm{ATP}+\mathrm{mH}_{\text {inside }}^{+}
$$

The work exerted will depend upon the speed of the contraction, and the cross-sectional area of the muscle times its length. Muscle contraction speeds are normally in the range of 3 milliseconds. The initial velocity will equal the impulse force divided by the mass ($v=\mathrm{F}_{\mathrm{impuls}} /$ mass $)$.

The work done in the leap is proportional to mass and the height of the leap ($\mathrm{W} \propto \mathrm{mH}$), while the work of the muscles is proportional to the mass of the muscle (or the whole organism) $(\mathrm{W} \propto \mathrm{m})$. It follows then, that the total work is related solely to the height, since the organism's mass cancels out. Thus, the height of the leap is not proportional to the organisms's size, but rather is similar for any organism. D'Arcy Thompson describes this as an example of the Principle of Biological Similitude.

$$
\begin{gathered}
\mu_{j}^{\text {liquid }}=\mu_{j}^{*}+R T \ln a_{j}+\overline{V_{j}} P+z_{j} F E+m_{j} g h \\
a_{j}=\gamma_{j} c_{j} \\
\hline \begin{array}{l}
\text { The activity of water }\left(a_{j}\right) \text { is the } \\
\text { product of the activity coefficient }
\end{array}
\end{gathered}
$$

product of the act and the concentration of water

$$
R T \ln a_{j}=\overline{V_{j}} \Pi
$$

The partial molal volume of species j is the incremental increase in volume with the addition of species j . For water, it is $18.0 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$

The terms inter-relate various properties of water: changes in its activity with the addition of solutes,
and the relation to pressure.

$$
\Pi_{s}=R T \sum_{j} c_{j} \quad \text { Van't Hoff relation }
$$

Numerical Values of Constants and Coefficients

Symbol	Description	Magnitude
c	speed of light in vacuum	$2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$c_{w v}^{*}$	saturation concentration of water vapor (i.e., at 100% relative humidity)	See pp. 548-550 for values from $-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
$C_{P}^{\text {rater }}$	volumetric heat capacity of water at constant pressure (1 atmosphere, 0.1013 MPa)	$4.217 \mathrm{MJ} \mathrm{m}^{-3}{ }^{\circ} \mathrm{C}^{-1}$ at $0^{\circ} \mathrm{C}$ $4.175 \mathrm{MJ} \mathrm{m}^{-3}{ }^{\circ} \mathrm{C}^{-1}$ at $20^{\circ} \mathrm{C}$ $4.146 \mathrm{MJ} \mathrm{m}^{-3}{ }^{\circ} \mathrm{C}^{-1}$ at $40^{\circ} \mathrm{C}$
$C_{P}^{\text {air }}$	volumetric heat capacity of dry air at constant pressure (1 atmosphere)	$\begin{aligned} & 1.300 \mathrm{~kJ} \mathrm{~m}^{-3}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 1.212 \mathrm{~kJ} \mathrm{~m}^{-3}{ }^{\circ} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 1.136 \mathrm{~kJ} \mathrm{~m}^{-3}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
$D_{\mathrm{CO}_{2}}$	$\begin{aligned} & \text { diffusion coefficient of } \mathrm{CO}_{2} \text { in } \\ & \text { air }(1 \text { atmosphere, } 0.1013 \\ & \mathrm{MPa}) \end{aligned}$	$\begin{aligned} & 1.33 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 1.42 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 10^{\circ} \mathrm{C} \\ & 1.51 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 1.60 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { a } 30^{\circ} \mathrm{C} \\ & 1.70 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
$D_{\mathrm{O}_{2}}$	diffusion coefficient of O_{2} in air (1 atmosphere, 0.1013 MPa)	$1.95 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$
$D_{w v}$	diffusion coefficient of water vapor in air (1 atmosphere, 0.1013 MPa)	$\begin{aligned} & 2.13 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 2.27 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 10^{\circ} \mathrm{C} \\ & 2.42 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 2.57 \times 10^{-5} \mathrm{~m}^{-1} \text { at } 30^{\circ} \mathrm{C} \\ & 2.72 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
e	base for natural logarithm electronic charge	$\begin{aligned} & 2.71828(1 / e=0.368) \\ & 1.602 \times 10^{-19} \mathrm{C} \end{aligned}$
F	Faraday's constant	$\begin{aligned} & 9.649 \times 10^{4} \text { coulomb mol }^{-1} \\ & 9.649 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~V}^{-1} \\ & 2.306 \times 10^{4} \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~V}^{-1} \\ & 23.06 \mathrm{kcal} \mathrm{~mol}^{-1} \mathrm{~V}^{-1} \end{aligned}$

Symbol	Description	Magnitude
g	gravitational acceleration	$9.780 \mathrm{~m} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 0^{\circ}$ latitude) $9.807 \mathrm{~m} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 45^{\circ}$ latitude) $9.832 \mathrm{~m} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 90^{\circ}$ latitude) $978.0 \mathrm{~cm} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 0^{\circ}$ latitude) $980.7 \mathrm{~cm} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 45^{\circ}$ latitude) $983.2 \mathrm{~cm} \mathrm{~s}^{-2}$ (sea level ${ }^{1}, 90^{\circ}$ latitude)
h	Planck's constant	$\begin{aligned} & 6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 6.626 \times 10^{-27} \mathrm{erg} \mathrm{~s} \\ & 0.4136 \times 10^{-14} \mathrm{eV} \mathrm{~s} \\ & 1.584 \times 10^{-37} \mathrm{kcal} \mathrm{~s} \end{aligned}$
$h \dot{c}$		$\begin{aligned} & 1.986 \times 10^{-25} \mathrm{~J} \mathrm{~m} \\ & 1.240 \mathrm{eV} \mathrm{~nm} \end{aligned}$
$H_{\text {sub }}$	heat of sublimation of water	$\begin{aligned} & 51.37 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.847 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at }-10^{\circ} \mathrm{C} \\ & 51.17 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.835 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at }-5^{\circ} \mathrm{C} \\ & 51.00 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.826 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 0^{\circ} \mathrm{C} \\ & 12.27 \mathrm{kcal} \mathrm{~mol}^{-1}\left(680 \mathrm{cal} \mathrm{~g}^{-1}\right) \text { at }-10^{\circ} \mathrm{C} \\ & 12.22 \mathrm{kcal} \mathrm{~mol}^{-1}\left(677 \mathrm{cal} \mathrm{~g}^{-1}\right) \text { at }-5^{\circ} \mathrm{C} \\ & 12.18 \mathrm{kcal} \mathrm{~mol}^{-1}\left(675 \mathrm{cal} \mathrm{~g}^{-1}\right) \text { at } 0^{\circ} \mathrm{C} \end{aligned}$
$H_{\text {vap }}$	heat of vaporization of water	$\begin{aligned} & 45.06 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.501 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 0^{\circ} \mathrm{C} \\ & 44.63 \mathrm{~kJ} \mathrm{mo}^{-1}\left(2.477 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 10^{\circ} \mathrm{C} \\ & 44.21 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.454 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 20^{\circ} \mathrm{C} \\ & 44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.442 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 25^{\circ} \mathrm{C} \\ & 43.78 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.430 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 30^{\circ} \mathrm{C} \\ & 43.35 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.406 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 40^{\circ} \mathrm{C} \\ & 42.91 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.382 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 50^{\circ} \mathrm{C} \\ & 40.68 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2.258 \mathrm{MJ} \mathrm{~kg}^{-1}\right) \text { at } 100^{\circ} \mathrm{C} \end{aligned}$
k	Boltzmann's constant	$\begin{aligned} & 1.381 \times 10^{-23} \mathrm{~J} \text { molecule }{ }^{-1} \mathrm{~K}^{-1} \\ & 1.381 \times 10^{-16} \mathrm{erg} \text { molecule }^{-1} \mathrm{~K}^{-1} \\ & 8.617 \times 10^{-5} \mathrm{eV} \text { molecule }^{-1} \mathrm{~K}^{-1} \end{aligned}$
$k T$		$\begin{aligned} & 0.02354 \mathrm{eV} \text { molecule }{ }^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 0.02526 \mathrm{eV} \text { molecule } \\ & 0.02569 \mathrm{eV} \text { molecule }{ }^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.02699 \mathrm{eV}^{\circ} \mathrm{C} \text { molecule }{ }^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
$K^{\text {air }}$	thermal conductivity coefficient of dry air (1 atmosphere) ${ }^{2}$	$\begin{aligned} & 0.0237 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at }-10^{\circ} \mathrm{C} \\ & 0.0243 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 0.0250 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 10^{\circ} \mathrm{C} \\ & 0.0257 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.0264 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 30^{\circ} \mathrm{C} \\ & 0.0270 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \\ & 0.0277 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 50^{\circ} \mathrm{C} \end{aligned}$

Symbol	Description	Magnitude
	thermal conductivity coefficient of moist air (100% relative humidity, 1 atmosphere)	$\begin{aligned} & 0.0242 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 0.0255 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.0264 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
$K^{\text {water }}$	thermal conductivity coefficient of water	$\begin{aligned} & 0.565 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 0.599 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.627 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
$\ln 2$		0.6931
N	Avogadro's number	6.0220×10^{23} entities mol^{-1}
Nhc		$0.1196 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~m}$ $119600 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~nm}$ $28.60 \mathrm{kcal} \mathrm{mol}^{-1} \mu \mathrm{~m}$ $28600 \mathrm{kcal} \mathrm{mol}^{-1} \mathrm{~nm}$
N_{w}^{*}	saturation mole fraction of water vapor (i.e., at 100% relative humidity) at 1 atmosphere (0.1013 MPa)	See pp. 548-550 for values from $-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
$P_{w v}^{*}$	saturation vapor pressure of water protonic charge	$\begin{aligned} & \text { See pp. } 548-500 \text { for values } \\ & \text { from }-30^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \text {. } \\ & 1.602 \times 10^{-19} \mathrm{C} \end{aligned}$
R	gas constant	$\begin{aligned} & 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & 1.987 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & 8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & 8.314 \times 10^{-6} \mathrm{~m}^{3} \mathrm{MPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & 0.08205 \text { litre atmosphere }_{\text {mol }}{ }^{-1} \mathrm{~K}^{-1} \\ & 0.08314 \text { litre bar mol }{ }^{-1} \mathrm{~K}^{-1} \\ & 83.14 \mathrm{~cm}^{3} \text { bar mol }{ }^{-1} \mathrm{~K}^{-1} \end{aligned}$
$R T$		```\(2.271 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\left(\mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}-1\right)\) at \(0^{\circ} \mathrm{C}\) \(2.437 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\left(\mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}{ }^{-1}\right)\) at \(20^{\circ} \mathrm{C}\) \(2.479 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\left(\mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}^{-1}\right)\) at \(25^{\circ} \mathrm{C}\) \(2.271 \times 10^{-3} \mathrm{~m}^{3} \mathrm{MPa} \mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) \(2.437 \times 10^{-3} \mathrm{~m}^{3} \mathrm{MPa} \mathrm{mol}^{-1}\) at \(20^{\circ} \mathrm{C}\) \(2.479 \times 10^{-3} \mathrm{~m}^{3} \mathrm{MPa} \mathrm{mol}^{-1}\) at \(25^{\circ} \mathrm{C}\) \(542.4 \mathrm{cal} \mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) \(582.2 \mathrm{cal} \mathrm{mol}^{-1}\) at \(20^{\circ} \mathrm{C}\) 2.271 litre \(\mathrm{MPa} \mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) 2.437 litre \(\mathrm{MPa} \mathrm{mol}{ }^{-1}\) at \(20^{\circ} \mathrm{C}\) 22.71 litre bar \(\mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) 24.37 litre bar \(\mathrm{mol}^{-1}\) at \(20^{\circ} \mathrm{C}\) \(22710 \mathrm{~cm}^{3}\) bar \(\mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) \(24370 \mathrm{~cm}^{3}\) bar \(\mathrm{mol}^{-1}\) at \(20^{\circ} \mathrm{C}\) 22.41 litre atmosphere \(\mathrm{mol}^{-1}\) at \(0^{\circ} \mathrm{C}\) 24.05 litre atmosphere \(\mathrm{mol}^{-1}\) at \(20^{\circ} \mathrm{C}\)```
$2.303 R T$		$\begin{aligned} & 5.612 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 5.708 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 25^{\circ} \mathrm{C} \\ & 1.342 \mathrm{kcal} \mathrm{~mol}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 1.364 \mathrm{kcal} \mathrm{~mol}^{-1} \text { at } 25^{\circ} \mathrm{C} \\ & 56120 \mathrm{~cm}^{3} \text { bar mol }^{-1} \text { at } 20^{\circ} \mathrm{C} \end{aligned}$

Symbol	Description	Magnitude
RT/F		$\begin{aligned} & 25.3 \mathrm{mV} \text { at } 20^{\circ} \mathrm{C} \\ & 25.7 \mathrm{mV} \text { at } 25^{\circ} \mathrm{C} \end{aligned}$
2.303 RT/F		58.2 mV at $20^{\circ} \mathrm{C}$ 59.2 mV at $25^{\circ} \mathrm{C}$ 60.2 mV at $30^{\circ} \mathrm{C}$
$R T / \bar{V}_{w}$		135.0 MPa at $20^{\circ} \mathrm{C}$ 137.3 MPa at $25^{\circ} \mathrm{C}$ $32.31 \mathrm{cal} \mathrm{cm}^{-3}$ at $20^{\circ} \mathrm{C}$ $135.0 \mathrm{~J} \mathrm{~cm}^{-3}$ at $20^{\circ} \mathrm{C}$ 1350 bars at $20^{\circ} \mathrm{C}$ 1330 atmospheres at $20^{\circ} \mathrm{C}$
$2.303 R T / \bar{V}_{w}$		$\begin{aligned} & 310.9 \mathrm{MPa} \text { at } 20^{\circ} \mathrm{C} \\ & 316.2 \mathrm{MPa} \text { at } 25^{\circ} \mathrm{C} \\ & 3063 \text { atmospheres at } 20^{\circ} \mathrm{C} \\ & 3109 \text { bars at } 20^{\circ} \mathrm{C} \end{aligned}$
	solar constant	$\begin{aligned} & 1368 \mathrm{~W} \mathrm{~m}^{-2} \\ & 1.960 \mathrm{cal} \mathrm{~cm}^{-2} \mathrm{~min}^{-1} \\ & 1.368 \times 10^{5} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\ & 0.1368 \mathrm{~W} \mathrm{~cm}^{-2} \end{aligned}$
	thermal capacity of water (mass basis)	$\begin{aligned} & 4218 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 4182 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 4179 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \\ & 1.0074 \mathrm{cal} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 0.9988 \mathrm{cal} \mathrm{~g}^{-1}{ }^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.9980 \mathrm{cal} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
	thermal capacity of water (mole basis)	$\begin{aligned} & 75.99 \mathrm{~J} \mathrm{~mol}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 75.34 \mathrm{~J} \mathrm{~mol}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 75.28 \mathrm{~J} \mathrm{~mol}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \\ & 18.14 \mathrm{cal} \mathrm{~mol}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 17.99 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{C}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 17.98 \mathrm{cal} \mathrm{~mol}^{-1}{ }^{\circ} \mathrm{C}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
\bar{V}_{w}	partial molal volume of water	$\begin{aligned} & 1.805 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 18.05 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \text { at } 20^{\circ} \mathrm{C} \end{aligned}$
ε_{0}	permittivity of a vacuum	$\begin{aligned} & 8.854 \times 10^{-12} \text { coulomb }{ }^{2} \mathrm{~m}^{-2} \mathrm{~N}^{-1} \\ & 8.854 \times 10^{-12} \text { coulomb m }{ }^{-1} \mathrm{~V}^{-1} \end{aligned}$
$\eta_{\text {air }}$	viscosity of air	$\begin{aligned} & 1.716 \times 10^{-5} \mathrm{~Pa} \mathrm{~s} \text { at } 0^{\circ} \mathrm{C} \\ & 1.813 \times 10^{-5} \mathrm{~Pa} \mathrm{~s} \text { at } 20^{\circ} \mathrm{C} \\ & 1.907 \times 10^{-5} \mathrm{~Pa} \text { s at } 40^{\circ} \mathrm{C} \end{aligned}$
η_{w}	viscosity of water	$\begin{aligned} & 1.787 \times 10^{-3} \mathrm{~Pa} \mathrm{~s} \text { at } 0^{\circ} \mathrm{C} \\ & 1.307 \times 10^{-3} \mathrm{~Pa} \text { s at } 10^{\circ} \mathrm{C} \\ & 1.002 \times 10^{-3} \mathrm{~Pa} \mathrm{~s} \text { at } 20^{\circ} \mathrm{C} \\ & 0.798 \times 10^{-3} \mathrm{~Pa} \mathrm{~s} \text { at } 30^{\circ} \mathrm{C} \\ & 0.653 \times 10^{-3} \mathrm{~Pa} \text { sat } 40^{\circ} \mathrm{C} \\ & 0.547 \times 10^{-3} \mathrm{~Pa} \mathrm{~s} \text { at } 50^{\circ} \mathrm{C} \\ & 0.01002 \text { dyn s cm }{ }^{-2} \text { at } 20^{\circ} \mathrm{C} \\ & 0.01002 \text { poise at } 20^{\circ} \mathrm{C} \end{aligned}$

Symbol	Description	Magnitude
$\nu_{\text {air }}$	kinematic viscosity of air (dry, 1 atmosphere)	$\begin{aligned} & 1.327 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 1.505 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 1.691 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
ν_{w}	kinematic viscosity of water	$\begin{aligned} & 1.787 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 0^{\circ} \mathrm{C} \\ & 1.004 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 20^{\circ} \mathrm{C} \\ & 0.658 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
π	circumference/diameter of circle	3.14159
$\rho_{\text {air }}$	density of dry air (1 atmosphere, 0.1013 MPa)	$\begin{aligned} & 1.293 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 0^{\circ} \mathrm{C} \\ & 1.205 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 20^{\circ} \mathrm{C} \\ & 1.128 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
	density of saturated air (1 atmosphere) ${ }^{3}$	$\begin{aligned} & 1.290 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 0^{\circ} \mathrm{C} \\ & 1.194 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 20^{\circ} \mathrm{C} \\ & 1.097 \mathrm{~kg} \mathrm{~m}^{-3} \text { at } 40^{\circ} \mathrm{C} \end{aligned}$
ρ_{w}	density of water	$999.8 \mathrm{~kg} \mathrm{~m}^{-3}\left(0.9998 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $0^{\circ} \mathrm{C}$ $1000.0 \mathrm{~kg} \mathrm{~m}^{-3}\left(1.0000 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $4^{\circ} \mathrm{C}$ $999.7 \mathrm{~kg} \mathrm{~m}^{-3}\left(0.9997 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $10^{\circ} \mathrm{C}$ $998.2 \mathrm{~kg} \mathrm{~m}^{-3}\left(0.9982 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $20^{\circ} \mathrm{C}$ $995.6 \mathrm{~kg} \mathrm{~m}^{-3}\left(0.9956 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $30^{\circ} \mathrm{C}$ $992.2 \mathrm{~kg} \mathrm{~m}^{-3}\left(0.9922 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ at $40^{\circ} \mathrm{C}$
$\rho_{w} \mathrm{~g}$		$0.00979 \mathrm{MPa} \mathrm{m}^{-1}\left(20^{\circ} \mathrm{C}\right.$, sea level, 45° latitude) $0.0979 \mathrm{bar} \mathrm{m}^{-1}\left(20^{\circ} \mathrm{C}\right.$, sea level, 45° latitude) $979 \mathrm{dyn} \mathrm{cm}^{-3}\left(20^{\circ} \mathrm{C}\right.$, sea level, 45° latitude) 0.0966 atmosphere $\mathrm{m}^{-1}\left(20^{\circ} \mathrm{C}\right.$, sea level, 45° latitude)
σ	Stefan-Boltzmann constant	$\begin{aligned} & 5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\ & 5.670 \times 10^{-12} \mathrm{~W} \mathrm{~cm}^{-2} \mathrm{~K}^{-4} \\ & 8.130 \times 10^{-11} \mathrm{cal} \mathrm{~cm}^{-2} \mathrm{~min}^{-1} \mathrm{~K}^{-4} \\ & 5.670 \times 10^{-5} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s} \mathrm{~s}^{-1} \mathrm{~K}^{-4} \end{aligned}$
σ_{w}	surface tension of water	$0.0756 \mathrm{~N} \mathrm{~m}^{-1}(\mathrm{~Pa} \mathrm{~m})$ at $0^{\circ} \mathrm{C}$ $0.0742 \mathrm{~N} \mathrm{~m}^{-1}(\mathrm{Pam})$ at $10^{\circ} \mathrm{C}$ $0.0728 \mathrm{~N} \mathrm{~m}^{-1}(\mathrm{Pam})$ at $20^{\circ} \mathrm{C}$ $0.0712 \mathrm{~N} \mathrm{~m}^{-1}(\mathrm{~Pa} \mathrm{~m})$ at $30^{\circ} \mathrm{C}$ $0.0696 \mathrm{~N} \mathrm{~m}^{-1}(\mathrm{~Pa} \mathrm{~m})$ at $40^{\circ} \mathrm{C}$ $7.28 \times 10^{-8} \mathrm{MPa}$ m at $20^{\circ} \mathrm{C}$ $72.8 \mathrm{dyn} \mathrm{cm}^{-1}$ at $20^{\circ} \mathrm{C}$ 7.18×10^{-5} atmosphere cm at $20^{\circ} \mathrm{C}$ 7.28×10^{-5} bar cm at $20^{\circ} \mathrm{C}$

3. Moist air is less dense than dry air at the same temperature and pressure, because the molecular weight of water (18.0) is less than the average for air (29.0).
