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Announcements & Key Concepts (re Today)

Ø Drag forces

Some relevant underlying concepts of the day…

Ø Terminal velocity

à Online HW #4: Due TODAY (at midnight)

à Written HW#1 ready to be handed back --> Some common issues were…

Ø Circular motion (REVISTED)



Ø Read the question carefully. Answer exactly what is asked. Answer all of the parts. Reread 
to make sure your solution is stated in a way that clearly answers the question posed.

Ø Establish coordinates for your problem and stick with them: eg. for question #2 if the cliff is 
labeled 0, then the ground below is ±75 m (pick one) . . . also for more complicated 
problems label one direction x and another y and stick with this in all equations.

Ø Keep your directions straight: eg. for question #3 we are given horizontal velocity (Vx) and 
vertical acceleration is assumed (Ay) but these cannot be combined without some 
thought. (Be careful with kinematic and constant acceleration formulas). For simplicity 
work out each component separately and then combine the results.

Vectors have both magnitude and direction. Velocity is a vector. When asked to find a 
velocity a complete answer must specify both completely (via components in an established 
coordinate system or by giving length (magnitude) and angle (direction) together in 
appropriate units)

Ø For question #6 'unit vectors' are not just normalized vectors: e.g. (i,j,k)…

Ø Do a sanity check: Overall does it make sense? Can a Kangaroo jump that high? Does this 
seem right based on the other parts of the same problem? Is this answer reasonable?… 

Grader comments re HW1



Friction: Static vs Kinetic vs “Rolling”

Knight (2013)

Note: For wheels, the notion of 
“rolling friction” here (as 
opposed to static friction) is a 
bit different re Kesten & Tauck
(which is in ch.8!)

Wolfson



Friction: Static vs Kinetic vs “Rolling”

Wolfson

à Nonetheless, there are some key 
distinctions at play here!

Knight (2013)



Friction

à But is the friction between the tires and the road the entire story here?



Drag

Ø So how much “friction” is exerted on a 
speeding car or a falling object?

Knight (2013)

à Might be 
thinking/remembering 
something a la terminal 
velocity.... 



Drag

Knight (2013)

à Note here that drag (D) is a vector/force, some derived quantities are introduced 
(e.g., C), and a geometric parameter arises (A) 



Drag

Knight (2013)



Drag à Terminal Velocity

Knight (2013)



Terminal Velocity

Knight (2013)

Ø This equation applies to 
“steady-state” (i.e., doesn’t tell 
you how things are changing w/ 
time)

à Not too hard to infer 
relevant dynamics though...



Terminal Velocity

Knight (2013)



REVISIT (re 9/22)

Hughes-Hallett et al. (2005)

Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2nd Law leads to:
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11.6 APPLICATIONS AND MODELING 553

Separating and integrating gives

Solving for u:
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where A is an arbitrary constant. We find A from the initial condition that the obiect starts frorn rest.
so r, - 0 when t : 0. Substituting
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The graph of this function is in Figure 11.215. The horizontal asymptote represents the terminal

veloci4', rn.q f 1.,:.

Air resistance, A'rr Terminal velocity

Force due to
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Figure 11.44; Forces acting on a falling object Figure 1 1.45: Velocity of falling dust peulicle assuming
that air resistance is kr.,

Notice that the terminal velocity can also be obtained from the differential equation by setting
tl r'f tlt U and solving lor r':

cl,t,nt*:mS 'kt'' :0 so ?r:

eompartmental Analysis: A Reservclr

trLlJ

k

Many processes can be modeled as a container with various solutions flowing in and out-for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city's
water reservoir, fed partly by clean water from a spring and partly by run-ofi from the surrounding
land. In New England, and many other areas with much snow in the winter, the run-off contains salt
which has been put on the roads to make them safe for driving. We consider the concentration of
salt in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the
rate at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially the rate at which the salt is
entering is less than the rate at which it is flowing out, and the quantity of salt in the lake decreases.
In either case, the salt concentration levels off at an equiiibrium value.
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e.g., speed 
of falling 
raindrop

REVISIT (re 9/22)
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Assumed drag force 
proportional to v

Assumed drag force 
proportional to v2

Be careful! (re assumptions)

à Can these two possibly be 
consistent w/ one another?



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)

d



Looking ahead.....

Ø We now have most of the pieces in place for one of the most practically useful 
interdisciplinary examples/concepts: Harmonic oscillator

http://www.feynmanlectures.caltech.edu/I_21.html



Looking ahead.....

Wolfson Eqn.13.18

à A key concept is naturally built in to this heuristic: Energy.....

Band-pass filter (RLC circuit)

https://www.uni-due.de/DI/REV_PhoneticsPhonology.htm

Acoustic phonetics

à Mass-on-a-spring 
(leads to oscillations)

Quantum mechanics

Predator-prey dynamics

Cell biology
(Kruse & Julicher, 2005)

Note: Here the drag is proportional to v (not v2)



..... but let’s first return to a previously stated problem

A chain of length x and mass m is hanging over the edge of a tall building and 
does not touch the ground. How much work is required to lift the chain to the top 
of the building?

To (eventually) answer this, we’ll need some more pieces:
• Definition of work
• Integration

Hughes-Hallet et al (2005)

à We need to further 
develop the notion of 
integration

Wolfson



Review: Uniform circular motion

Resnick & Halliday (1966)

Wolfson

Polar coordinates

à “Unit vectors” can 
readily be extended to 
polar coordinates



Circular Motion & Force

Wolfson



Circular Motion

Wolfson

Note: This case isn’t uniform circular motion per se....



http://www.dailymail.co.uk/news/article-1271844/Flamingo-Land-rollercoaster-Thrillseekers-left-hanging-upside-50ft-up.html



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)

b > e > a = c > d

Note: Changing sign of v doesn’t affect a



Circular Motion

Ø 1-D kinematics translates directly to circular motion (in polar coords.)

Knight (2013)

Note:
• You solved several “differential equations” to get these (linear) formulae (see 9/11ff notes)
• Newton’s 2nd Law is a differential equation



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)

c

Remember the chosen convention!



Additional Problems
(some w/ solutions, some w/o)



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)



Ex.

Shaskol’Skaya & El’Tsin (1963)



Ex.

Knight (2013)



Ex. (SOL)

Knight (2013)



Ex.

Resnick & Halliday (1966)



Ex. (SOL)

Resnick & Halliday (1966)



Ex.

Resnick & Halliday (1966)

Note: This problem is essentially 
identical in nature to Wolfson
Ex.5.8. Also note here the 
(confusing?) distinction between 
“static” and “rolling” friction



Ex. (SOL)

Resnick & Halliday (1966)



Ex.

Resnick & Halliday (1966)



Ex. (SOL)

Resnick & Halliday (1966)



Ex.

Resnick & Halliday (1966)



Ex. (SOL)

Resnick & Halliday (1966)


