
Christopher Bergevin
York University, Dept. of Physics & Astronomy
Office: Petrie 240 Lab: Farq 103
cberge@yorku.ca

PHYS 1420 (F19)
Physics with Applications to Life Sciences

2019.10.07
Relevant reading:
Kesten & Tauck ch.6.3-6.4

Ref. (re images):
Wolfson (2007), Knight (2017)

Announcements & Key Concepts (re Today)

Ø Energy à Work

Some relevant underlying concepts of the day…

Ø Hashing out work….

à Online HW #5: Posted and due next Monday (10/14)

à Midterm exam coming up on Monday 10/21

Ø Integrals

à No class next week (10/14-10/18): READING WEEK

Energy

Ø “Energy” is a fundamental concept in all of science

Ø Etymology is of Greek origin for “activity”

Ø Comes in many different flavors/contexts:

Potential

Kinetic
Thermal

Elastic

Chemical

Mechanical

Nuclear

Electrical

Gravitational

à Somehow, these are all different, but yet are all the same....

Ø At the most basic level, “something” has energy and can transfer/receive such from
other “somethings” around it....

E = mc2

Force + Energy?

Ø How are these two connected?

Ø Intuitively.....
Niagara Falls

Robert Moses Niagara Power Plant

à Work!

Work

Ø Work is the energy transferred between systems
via an applied force

Units
(kg m/s2) * (m) = kg (m/s)2

= J
à A bit complicated once vectors are factored
in (direction matters!). But basically....

Wolfson

Wolfson

Work
Note: The work (W) here is only that tied
to force F. If there are other forces at
play, the associated work needs to be
calculated separately....

à So work is energy. Note that unlike force, work/energy is a scalar
(this makes life much easier downstream!)

Wolfson

Work

Ø Direction matters! This does
make sense intuitively....

à Think about what direction gravity works in
and how changing the angle of the wedge
would affect “work”

à More fun when Earth does its
work on the skier when on the
steep part!

Note: When forces are not constant per se,
problems can be very hard via Newton’s Laws.
But they can be much more accessible via the
lens of “energy” (as we’ll see)

Ex.

Hughes-Hallet et al (2005)

Ex. (SOL)

Hughes-Hallet et al (2005)

Resnick & Halliday (1966)

Integrals…

Ø So this whole integration thing.....

Ø Let’s take a tangent: What is the area of a triangle?

Tangent: Integrals

Hughes-Hallett et al (2005)

Tangent: Integrals to compute areas

Thomas (et al) (2014)

à The shape of the curve makes this
kinda hard. But perhaps we can use an
“easier” shape (and a lot of them) to
get what we need….

Tangent: Integrals to compute areas

Thomas (et al) (2014)

“Riemann sums”

Tangent: Integrals to compute areas

Thomas (et al) (2014)

Tangent: Integrals to compute areas

Thomas (et al) (2014)

% Numerical integration example - original source:
% http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-integration/

clear;
% ----------------------
% User parameters
F = @(x)(sin(x)); % function to integrate
%F = @(x)(exp(-x.^2/2)); % function to integrate
xL= [0 pi]; % integration limits

N= 5; % Method A - # of points for LEFT and RIGHT
pts= [3 4 5 10 25]; % Method B - # of points to consider integrating (via trapz function)
dur= 1; % Method B - pause duration [s] for trapz loop
% ----------------------

% ***************
% Show the curve
figure(1);
fplot(F,[xL(1),xL(2)]) % a quick way to plot a function
xlabel('x'); ylabel('F(x)');

% ***************
% Method A
% Approximate the integral via brute force LEFT and RIGHT Riemann sums
sumL= 0; sumR=0;
delX= (xL(2)-xL(1))/N; % step-size
x= linspace(xL(1),xL(2),N+1); % add one since N is # of 'boxes' and is really N-1
for nn=1:N

sumL= sumL + F(x(nn))*delX;
sumR= sumR + F(x(nn+1))*delX;

end
disp(['left-hand rule yields =',num2str(sumL),' (for ',num2str(N),' steps)']);
disp(sprintf('right-hand rule yields = %g', sumR));

% ***************
% Method B
% Approximate the integral via trapz for different numbers of points
for np=pts

figure(2); clf % clear the current figure
hold on % allow stuff to be added to this plot
x = linspace(xL(1),xL(2),np); % generate x values
y = F(x); % generate y values
a2 = trapz(x,y); % use trapz to integrate
% Generate and display the trapezoids used by trapz
for ii=1:length(x)-1

px=[x(ii) x(ii+1) x(ii+1) x(ii)]; py=[0 0 y(ii+1) y(ii)];
fill(px,py,ii)

end
fplot(F,[xL(1),xL(2)]); xlabel('x'); ylabel('F(x)');
disp(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
title(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
pause(dur); % wait a bit

end

% ***************
% Method C
a1 = quad(F,xL(1),xL(2)); % use quad to integrate
msg = ['area calculated by quad.m = ' num2str(a1,10)]; disp(msg);

Three different approaches to doing the
integral in the code here

Aside: Computational approaches (via Matlab) INTexample1.m

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

area calculated by trapz.m for 3 points =1.5708

Trapezoid method (Method B)
np= 3

à Are these rectangles? Why not?
à Three points means how many ‘rectangles’?

INTexample1.m

Trapezoid method (Method B)
np= 4

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

area calculated by trapz.m for 4 points =1.8138

à What is the associated ‘error’?

INTexample1.m

Trapezoid method (Method B)
np= 5

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

area calculated by trapz.m for 5 points =1.8961

INTexample1.m

Trapezoid method (Method B)
np= 10

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

area calculated by trapz.m for 10 points =1.9797

INTexample1.m

Trapezoid method (Method B)
np= 25

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

area calculated by trapz.m for 25 points =1.9971

INTexample1.m

Tangent: Integrals

Thomas (et al) (2014)

Basic idea of adding up smaller bits
readily scales up from 2-D to 3-D
(i.e., “areas” à “slices”)

Tangent: Integrals

Hughes-Hallett et al (2005)

Tangent: Integrals

Hughes-Hallett et al (2005)

Note: Multiple approaches all lead
to the same answer, but some are
easier than others…

Wikipedia

Aside: Imaging

Wikipedia

Idea: (Re-)Build up 3-D object from

series of 2-D images*

* MRI, CT imaging, two photon imaging, confocal microscopy, etc.... all allow

for �3-D imaging�, but work under very different principles

Observation: Stacks of 2-D images are �sliced�
from a 3-D object

Franklin et al.

Ø Source and detector rotate
around object, thereby tracing out a
series of projected images

Ø Detector signal depends upon
effective attenuation coefficient of
what is in path between it and
source

Ø Uses x-rays (i.e., ionizing
radiation)

Ø Different tissue types have
different attenuation coefficients

Aside: Tomography

Derived from the Greek tomē ("cut") or tomos ("part" or "section") and graphein ("to write�)

à Think of 2-D �projections� as the
sum of �slices� of a 3-D object

Wikipedia

à From the 2-D projections, goal is
to reconstruct 3-D object

Note: We can only (directly) measure P, not S1 or S2
[we can only know the �slices� from the reconstruction]

Aside: Tomography

