PHYS 1420 (F19)
Physics with Applications to Life Sciences

Christopher Bergevin
York University, Dept. of Physics & Astronomy
Office: Petrie 240 Lab: Farqg 103

cberge@yorku.ca

2019.10.09
Relevant reading:

Kesten & Tauck ch. 6.5-6.7

Ref. (re images):
Wolfson (2007), Knight (2017)



BE

S
;I/;/

S




Announcements & Key Concepts (re Today)

- Online HW #5: Posted and due next Monday (10/14)

= No class next week (10/14-10/18): READING WEEK

- Midterm exam coming up on Monday 10/21

Some relevant underlying concepts of the day...

» Work & Integrals = Spring as an example

> Interdisciplinary connections and (review) examples

> Different types of energy...



Work as an Integral

> So this whole integration thing..... W= /, F-dr
4

» When the force varies w/ position, the amount of
work needed at a given point varies too

Consider stretching
a spring:

F, = —kx

Knight (2013)

Wolfson



Work as an Integral

> A bit more generally.... - Connection point to
Riemann sums

W = F(x) dx work (.10ne by avarying
N force in one dimension

Wolfson



) ) INT lel.
Computational Connection examplel.m

% Numerical integration example - original source:
% http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-integration/
clear;

% User parameters

F = @(x)(sin(x)); % function to integrate

$F = @(x)(exp(-x."2/2)); % function to integrate
xL= [0 pi]; % integration limits

N= 5; % Method A - # of points for LEFT and RIGHT

pts= [3 4 5 10 25]; % Method B - # of points to consider integrating (via trapz function)
dur= 1; % Method B - pause duration [s] for trapz loop

%
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% Show the curve

figure(1l);
fplot(F,[xL(1l),xL(2)]) % a quick way to plot a function
xlabel('x'); ylabel('F(x)');
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% Method A
% Approximate the integral via brute force LEFT and RIGHT Riemann sums
sumL= 0; sumR=0;
delX= (xL(2)-xL(1))/N; % step-size
x= linspace(xL(1l),xL(2),N+1); % add one since N is # of 'boxes' and is really N-1
for nn=1:N
sumL= sumL + F(x(nn))*delX; . 'ff h
e o LR, Note: Three different approaches to
end -

TN e Al s A A L doing the integral (via Riemann sums) in
Y kkkkKKKKRK KKK KKK
et s the code here

% Approximate the integral via trapz for different numbers of points
for np=pts

figure(2); clf % clear the current figure

hold on % allow stuff to be added to this plot

x = linspace(xL(1l),xL(2),np); % generate x values

o

y = F(x); % generate y values

a2 = trapz(x,y); % use trapz to integrate

% Generate and display the trapezoids used by trapz

for ii=l:length(x)-1
px=[x(1ii) x(ii+1l) =x(ii+l) =x(ii)]; py=[0 0 y(ii+l) y(ii)];
£ill(px,py,ii)

end

fplot(F,[xL(1),xL(2)]); xlabel('x'); ylabel('F(x)');

disp([ 'area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);

title([ 'area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
pause(dur); % wait a bit

end

Y kkkkKKKKKK KK KKK
% Method C
al = quad(F,xL(1),xL(2)); % use quad to integrate

msg = ['area calculated by quad.m = num2str(al,10)]; disp(msg);



Interdisciplinary Connection (Mathematics)

Acceleration

Integrate
(re time)

Velocity

Integrate
(re time)
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- So many “models” take the form of

differential equations (e.g., Newton’s 2nd)

and we use integration to solve such

Derivative
(re time)

Derivative
(re time)

- Sometimes integration is
called “anti-differentiation”



Review (re integration)

— Using integration, you can easily
derive the formulae up top!

Wolfson



Interdisciplinary Connection (Mathematics)

- Connection point back to friction/drag
Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2™ Law leads to:

dv o I Free-body
m-— =1mg — RV diagram Air resistance, kv

dt

Force due to
gravity, mg

Y

Figure 11.44: Forces acting on a falling object

mg Note: This approach is a bit more powerful than the
Solution vV = —= <1 — e—kt/m> steady-state one in that we know the explicit time-
k dependence!

Hughes-Hallett et al. (2005)



Review: Terminal Velocity

> This equation applies to

“steady-state” (i.e., doesn’t tell
you how things are changing w/
time)

Knight (2013)



Interdisciplinary Connection (Mathematics)

> Connecting back to warmth....

Newton'’s law of heating/cooling

ar
— =T, —T)

dt temperature
Initial |
temperature —___|
Solution M B

T (t) — TO + C e at - ‘m::::if‘“‘““i:z

———————————————————— ———= «— Room temperature

time
Reminder (general solution):

Differential equation Solution



Work as an Integral (intuitive example) Note: Be careful re the specified units!

- Very useful starting point is to draw a
diagram and set up the relevant variables!

Hughes-Hallet et al (2005)



Exercise

A chain of length x and mass m is hanging over the edge of a tall building and
does not touch the ground. How much work is required to lift the chain to the top

of the building?

- Rework the problem, finding a more general solution
that eschews quantitative values

- More problems along these lines are at the “back” of
the slides



Different Types of Energy

> At the most basic level, there are two ways to characterize energy:

Thermal energy is the sum of the micro-
scopic kinetic and potential energies of

all the atoms and bonds that make up the
 “Good” vs “Bad” energy (i.e., free energy vs entropy) object. An object has more thermal energy
when hot than when cold. Knight (2013)

e Kinetic vs Potential energy

= Such is embodied here.... - So “warmth” fits in here somehow...

> Think of kinetic energy as tied to motion while potential energy is stored






Conservation of Energy

> Perhaps one of the most important concepts in all of science....

“Energy can neither be created nor destroyed; —Notsi Shuch s ?Onsisr:ent w/ o fzundation
. at the heart of mechanics, that change is a
rather, it transforms from one form to another”

key consideration

Physics: Context for, well, just about everything e.g., E — m02

Chemistry: Foundation of the “laws of thermodynamics”

Biology: Much of evolution is geared
around minimizing wasted energy

Engineering: Efficiency (of energy
conversion) as a fundamental design
principle




