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Announcements & Key Concepts (re Today)

Ø Work & Integrals à Spring as an example

Some relevant underlying concepts of the day…

Ø Interdisciplinary connections and (review) examples

à Online HW #5: Posted and due next Monday (10/14)

à Midterm exam coming up on Monday 10/21

Ø Different types of energy…

à No class next week (10/14-10/18): READING WEEK



Work as an Integral

Ø So this whole integration thing.....

Ø When the force varies w/ position, the amount of 
work needed at a given point varies too

Wolfson

Consider stretching 
a spring:

Knight (2013)



Work as an Integral

Ø A bit more generally....

Wolfson

à Connection point to 
Riemann sums



Computational Connection

% Numerical integration example - original source:
% http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-integration/

clear;
% ----------------------
% User parameters
F = @(x)(sin(x)); % function to integrate
%F = @(x)(exp(-x.^2/2)); % function to integrate
xL= [0 pi]; % integration limits

N= 5;    % Method A - # of points for LEFT and RIGHT
pts= [3 4 5 10 25]; % Method B - # of points to consider integrating (via trapz function)
dur= 1;     % Method B - pause duration [s] for trapz loop
% ----------------------

% ***************
% Show the curve 
figure(1);
fplot(F,[xL(1),xL(2)]) % a quick way to plot a function
xlabel('x'); ylabel('F(x)');

% ***************
% Method A
% Approximate the integral via brute force LEFT and RIGHT Riemann sums
sumL= 0; sumR=0; 
delX= (xL(2)-xL(1))/N;    % step-size
x= linspace(xL(1),xL(2),N+1);  % add one since N is # of 'boxes' and is really N-1
for nn=1:N

sumL= sumL + F(x(nn))*delX;
sumR= sumR + F(x(nn+1))*delX;

end
disp(['left-hand rule yields =',num2str(sumL),' (for ',num2str(N),' steps)']);
disp(sprintf('right-hand rule yields = %g', sumR));

% ***************
% Method B
% Approximate the integral via trapz for different numbers of points
for np=pts

figure(2); clf % clear the current figure
hold on % allow stuff to be added to this plot
x = linspace(xL(1),xL(2),np); % generate x values
y = F(x); % generate y values
a2 = trapz(x,y); % use trapz to integrate
% Generate and display the trapezoids used by trapz
for ii=1:length(x)-1

px=[x(ii) x(ii+1) x(ii+1) x(ii)];   py=[0 0 y(ii+1) y(ii)];
fill(px,py,ii)

end
fplot(F,[xL(1),xL(2)]); xlabel('x'); ylabel('F(x)');
disp(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
title(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
pause(dur);   % wait a bit

end

% ***************
% Method C
a1 = quad(F,xL(1),xL(2)); % use quad to integrate
msg = ['area calculated by quad.m = ' num2str(a1,10)]; disp(msg);

Note: Three different approaches to 
doing the integral (via Riemann sums) in 
the code here

INTexample1.m
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à Sometimes integration is 
called “anti-differentiation”

à So many “models” take the form of 
differential equations (e.g., Newton’s 2nd) 
and we use integration to solve such

Interdisciplinary Connection (Mathematics)



Wolfson

à Using integration, you can easily 
derive the formulae up top!

Review (re integration)



Hughes-Hallett et al. (2005)

Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2nd Law leads to:

m
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Solution

à Connection point back to friction/drag

Interdisciplinary Connection (Mathematics)

11.6 APPLICATIONS AND MODELING 553

Separating and integrating gives

Solving for u:
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where A is an arbitrary constant. We find A from the initial condition that the obiect starts frorn rest.
so r, - 0 when t : 0. Substituting
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The graph of this function is in Figure 11.215. The horizontal asymptote represents the terminal

veloci4', rn.q f 1.,:.

Air resistance, A'rr Terminal velocity

Force due to
gravily, rn,g

Figure 11.44; Forces acting on a falling object Figure 1 1.45: Velocity of falling dust peulicle assuming
that air resistance is kr.,

Notice that the terminal velocity can also be obtained from the differential equation by setting
tl r'f tlt U and solving lor r':

cl,t,nt*:mS 'kt'' :0 so ?r:

eompartmental Analysis: A Reservclr

trLlJ

k

Many processes can be modeled as a container with various solutions flowing in and out-for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city's
water reservoir, fed partly by clean water from a spring and partly by run-ofi from the surrounding
land. In New England, and many other areas with much snow in the winter, the run-off contains salt
which has been put on the roads to make them safe for driving. We consider the concentration of
salt in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the
rate at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially the rate at which the salt is
entering is less than the rate at which it is flowing out, and the quantity of salt in the lake decreases.
In either case, the salt concentration levels off at an equiiibrium value.

Free-body 
diagram

Note: This approach is a bit more powerful than the 
steady-state one in that we know the explicit time-
dependence!



Review: Terminal Velocity

Knight (2013)

Ø This equation applies to 
“steady-state” (i.e., doesn’t tell 
you how things are changing w/ 
time)
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Interdisciplinary Connection (Mathematics)

Newton’s law of heating/cooling

T (t) = T0 + Ce�↵t

Solution

11.5 GROWTH AND DECAY *4.3

T*hi* 1! "ri' Volume and outflow in Great Lakes
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Example2

Solution

According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by

Q:Qoe 038''

When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get

,- - hr(u'l) r6rears.
0.38

When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies

0.01Q0:Qo6 038t.

Solving for t gives
- ln(0.01)

0.38

l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.
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ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
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Reminder (general solution):

Differential equation Solution

Ø Connecting back to warmth....



Work as an Integral (intuitive example)

Hughes-Hallet et al (2005)

à Very useful starting point is to draw a 
diagram and set up the relevant variables!

Note: Be careful re the specified units!



Exercise

A chain of length x and mass m is hanging over the edge of a tall building and 
does not touch the ground. How much work is required to lift the chain to the top 
of the building?

à Rework the problem, finding a more general solution 
that eschews quantitative values

à More problems along these lines are at the “back” of 
the slides



Different Types of Energy

Ø At the most basic level, there are two ways to characterize energy:

• Kinetic vs Potential energy

• “Good”  vs “Bad” energy (i.e., free energy vs entropy)

Ø Think of kinetic energy as tied to motion while potential energy is stored

Knight (2013)
à Such is embodied here.... à So “warmth” fits in here somehow...





Conservation of Energy

Ø Perhaps one of the most important concepts in all of science....

Physics: Context for, well, just about everything

Chemistry: Foundation of the “laws of thermodynamics”

Biology: Much of evolution is geared 
around minimizing wasted energy

Engineering: Efficiency (of energy 
conversion) as a fundamental design 
principle 

Note: Such is consistent w/ our foundation 
at the heart of mechanics, that change is a 
key consideration

e.g., E = mc2

“Energy can neither be created nor destroyed; 
rather, it transforms from one form to another”


