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70. Essir Shupes

Which shape has the greatest area?
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Key	Topics	&	Concepts (re	Today)

Ø Problem	solving	(revisited) &	quantitative	reasoning

Some	relevant	underlying	concepts	of	the	day…

Ø Mechanical	motivations….

Review:	algebra,	geometry,	coordinate	systems,	differential	calculus,	
integral	calculus,	differential	equations,	etc….

Ø Modeling &	notion	of	differential	equations

à Class	reps	needed	(email	me	if	you	want	to	volunteer)



Types	of	“problems”

Ø Those	w/	known	answers (e.g.,	yes/no,	¾,	etc.....)	

Some	types	of	problems	we’ll	deal	with:

Ø Open-ended	(i.e.,	answers	typically	lead	to	more	questions)

e.g.,	Why	is	the	sky	blue?

Ø Lateral	thinking	(i.e.,	“outside	the	box”)

Note:	For	the	most	part,	these	
will	be	the	type	of	problems	you	
encounter	on	HW	and	exams
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Types	of	“problems”

Ø Those	w/	known	answers (e.g.,	yes/no,	¾,	etc.....)	

Some	types	of	problems	we’ll	deal	with:

Ø Open-ended	(i.e.,	answers	typically	lead	to	more	questions)

e.g.,	Why	is	the	sky	blue?

Ø Lateral	thinking	(i.e.,	“outside	the	box”)

Ø Fermi	problems	(e.g.,	estimate	an	order	of	magnitude)



Ex.

Wolfson



Ø I	weigh	~200	lbs.	(that’s	~91	kg)

Ø Assume	I’m	made	up	entirely	of	water.	Density	of	water	is	1000	kg/m^3

Ø Avogadro’s	#	(6.02×1023/mol)	tells	me	#	of	particles	in	one	mole

Ø Molecular	mass	of	water	is	~18	(i.e.,	one	mole	of	water	has	a	mass	of	about	
18 grams)	à I’m	made	up	of	~91000/18	=	5060	mols

Ø Thus	there	are	~5056	× 6.02×1023 =	3x1027 atoms	in	my	body	

Be	thoughtful/careful	w/	units!

à But	is	this	even	right!?!

Ex.

Wolfson



SOL

Still	not	clear	if	either	of	
us	are	right(!!)



https://slate.com/human-interest/2019/09/back-envelope-math-science-rabbit-holes.html



Approaches	to	Problem	Solving

à This	is	a	reasonable	starting	point.	But	keep	in	mind	that	ideally	you’ll	
find	an	approach/method	that	works	best	for	you!



von	Baeyer



Mechanics
G.	Galileo I.	NewtonAristotleApollonius	of	Perga

von	Baeyer



“Modeling”
Jumping	ahead	slightly	for	the	moment....

à The	notion	of	change is	a	lynchpin	of	physics....	

Wolfson



“Modeling”

Ø To	help	put	some	context	in	place	for	the	physics	ahead,	let’s	take	a	slight	detour....		

Ø Calculus	provides	wonderful	tools	to	help	study	change

Ø In	particular,	a	very	useful	extension	of	calculus	is	known	as	differential	equations

Ø Here	comes	the	fun	part:	Many	problems	fall	
under	the	purview	ofmathematical	modeling

Whether	you	realize	it	
or	not,	you	have	
already	been	dealing	
with	DEs	in	some	
fashion....



“Mathematical	Modeling”

Bender

“This	book	is	designed	to	teach	students	how	to	apply	
mathematics	by	formulating,	analyzing,	and	criticizing	models.”

“The	first	part	of	the	book	requires	only	elementary	calculus	and,	
in	one	chapter,	basic	probability	theory.”

“Although	the	level	of	mathematics	required	is	not	high,	this	is	not	
an	easy	text:	Setting	up	and	manipulating	models	requires	
thought,	effort,	and	usually	discussion.”

“Often	problems	have	no	single	best	answer,	because	different	models	can	illuminate	
different	facets	of	a	problem.	Discussion	of	homework	in	class	by	the	students	is	an	
integral	part	of	the	learning	process;	in	fact,	my	classes	have	spent	about	half	the
time	discussing	homework..”

“I’d	appreciate	hearing	about	any	errors....”

From	the	preface	(1978)



“Mathematical	Modeling”

Bender

Ch.1	– “What	is	modeling?”

“The	theoretical	and	scientific	study	of	a	situation	centers	around	a	model,
that	is,	something	that	mimics	relevant	features	of	the	situation	being	studied.
For	example,	a	road	map,	a	geological	map,	and	a	plant	collection	are	all
models	that	mimic	different	aspects	of	a	portion	of	the	earth's	surface.”

“The	ultimate	test	of	a	model	is	how	well	it	performs	when	it	is	applied	to	the	
problems	it	was	designed	to	handle.	(You	cannot	reasonably	criticize	a	geological	map	
if	a	major	highway	is	not	marked	on	it;	however,	this	would	be	a	serious	deficiency	in	a	
road	map.)	When	a	model	is	used,	it	may	lead	to	incorrect	predictions.	The	model	is	
often	modified,	frequently	discarded,	and	sometimes	used	anyway	because	it	is	better	
than	nothing.	This	is	the	way	science	develops.”

“Here	we	are	concerned	exclusively	with	mathematical	models,	that	is,	models	that	
mimic	reality	by	using	the	language	of	mathematics.	[...]	What	makes	mathematical	
models	useful? If	we	"speak	in	mathematics,	then:



“Modeling” &	Differential	equations (DEs)

à A	very	common/useful	tool	in	our	toolbox....
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Laplace’s	equation

Maxwell’s	equations

Note:	This	just	a	specific	case	of	
Newton’s	2nd law	(F=ma)!

Several	basic	flavors	apparent:
Ø Ordinary	(ODE)
Ø Partial	(PDE)
Ø Scalar	vs.	Vector

Harmonic	oscillator

Note:	Though	DEs	pervade	
much	of	1420	material,	
you	are	not	expected	to	
become	adept	at	solving	
them	for	1420



Lorenz	equations

dx

dt

= �(y � x)

dy

dt

= rx� y � xz

dz

dt

= xy � bz

SIR	model
(‘compartmental’	model	in	epidemiology)

I1,8 SYSTEMS OF DIFFERENTIAL EQUATIONS 567

Being able to predict how many people will get sick, and when, is an imporlant step toward con-
trolling an epidemic. This is one of the responsibilities of Britain's Communicable Disease Surveil-
lance Centre and the US's Center for Disease Control and Prevention.

The S-/-J? model
We apply one of the most commonly used models for an epidemic, called the ^9-1-E model, to the
boarding school flu example. The population ofthe school is divided into three groups:

S : the number of susceptibles, the people who are not yet sick
but who could become sick

I - the number of infecteds, the people who are currently sick
fi : the number of recovered, or removed, the people who have

been sick and can no longer inf'ect others or be reinfected.

The number of susceptibles decreases with time, as people become infected. We assume that
the rate people become infected is proportional to the number of contacts between susceptible and
infected people. We expect the number of contacts between the two groups to be proportional to both
S and 1. (If S doubles, we expect the number of contacts to double; similarly, if I doubles, we expect
the number of contacts to double.) Thus we assume that the number of contacts is proportional to
the product, 51. In other words, we assume that for some constant a ) 0,

d,s /
,lt: (

Rate susceptibles
get sick

aSI.

Rate infecteds
-aSI-bLget removed

)-
(The negative sign is used because S is decreasing.)

The number of infecteds is changing in two ways: newly sick people are added to the infected
group, and others are removed. The newly sick people are exactly those people leaving the suscep-
tible group and so accrue at a rate of ctS I (with a positive sign this time). People leave the infected
group either because they recover (or die), or because they are physically removed from the rest of
the group and can no longer infect others. We assume that people are removed at a rate proportional
to the number sick, or bI, where b is a positive constant. Thus,

dI
dt

Rate susceptibles
get sick

Assuming that those who have recovered from the disease are no longer susceptible, the recov-
ered group increases at the rate of bI, so

dR
,1, - bl

We are assuming that having the flu confers immunity on a person, that is, that the person cannot
get the flu again. (This is true for a given strain of flu, at least in the short run.)

In analyzing the flu, we can use the fact that the total population ,S + 1 + fi is not changing.
(The total population, the total number of boys in the school, did not change during the epidemic.)
Thus, once we know S and 1, we can calculate fi. So we restrict our attention to the two equations

-aS I
aSI - bI.

dS
(lt
dI
d,t

dS

dt
= ��IS

dI

dt
= �IS � �I

dR

dt
= �I

à Chaos!

“Modeling” &	Differential	equations



82 3I BIFURCATIONS

Table 2.1 in Chapter 2 contains parameter estimates for the determin-
istic LPA mo del (2.2) derived from the data of the Desharnais experiment.
For the point estimates in that table (reported for a unit of flour volume
V : I) the LPAmodel

3.1 | A Bifurcation Experime:-:

FIGURE 3.1 I The top graph =:parameter plane for the lP-{ =:,
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(3.1)

predicts a stable cycle of period 2. However, if the adult death rate pr.,

is changed from the estimated value pa: 0.1108 in Table 2.1, then the
model predicted attractor can change. The bifurcation diagram in Fig. 3.1
shows howthe attractor changes as p., ranges over the allowable interval
from 0 to 1. In this diagram we see two period-doubling bifurcations and
an invariant-loop bifurcation. Specifically, the parameterized LPA model
predicts that Z castaneum populations with very low adult death rates trc,
will display stable equilibrium dlmamics. HoweveS the equilibrium will
destabilize and a (stable) 2-cycle bifurcationwill occur as po is increased
from low to intermediate values. This 2-cycle in turn will undergo a bifur-
cation and return to a stable equilibrium when tr2, is increased from inter-
mediate to high values.l Finally, at very high values of. ptothe stable equi-
librium will again destabilize and the resulting bifurcation gives rise to a
stable invariant loop, i.e., the beetle populations will extribit quasiperi-
odic (but technically not chaotic) oscillations.

The dynamic bifurcations predicted by the LPA model (3.1) in Fig. 3.1
are not intuitive consequences of an increased adult death rate. They
are highly nonlinear phenomena. Therefore, since it is not difficult to
manipulate the adult death rate in laboratory cultures of flour beetles,
this bifurcation scenario presents an excellent experimental opportunity
to test nonlinear population theory. A successful test of these model
predicted bifurcations would, in and of itself, be a noteworthy case study

I In actuality this reequilibration is not a "reverse" period doubling bifurcation, i.e., it is
not a period-doubling bifurcation that occurs as pro decreases through a critical value.
Instead, aperiod-doublingbifurcation occurs as p,oincreasesthrough the criticalvalue (at
approximately 0,36), causing the equilibrium to become stable and causing the creation
of unstable 2-cycles. Such a bifurcation is called "subcritical." As a result, there are values
of po for which stable equilibria, unstable 2-cycles, and stable 2-cycles simultaneously
exist. However, as,rz, increases further, the stable 2-cycles (which emanate from the first
period-doubling bifurcation at approximately 0.02) and the unstable 2-cycles disappear;
they "collide" and eliminate each other in a saddle-node bifurcation. This somewhat
complicated, multiple attractor situation occurs over a very small interval of p, values
and is barely visible in Fig. 3.1. It therefore plays no role in our study.
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Discrete	LPA	Model	(Cushing,	Costantino,	et	al.)

38 2 I MODELS

FIGURE 2.1 I the life cycle of the flour beetle, showing the dominant cannibalistic interac-
tions between different life-cycle stages.

and relative humidity (55To). Some particular details of the experimental
protocols were, by design, unique to each study. We will clearly identify
these details when each experiment is individually discussed.

Replication is a hallmark of TTibolium experiments. Many single (or
mixed species) cultures can be started with the same initial population
numbers and demography and maintained under identical conditions.
The ability to obtain replicate cultures is an important asset in conduct-
ing studies of population dlmamics, an asset all too often not available
to researchers. Not surprisingly, however, replicate cultures identically
initiated and maintained do not always dynamically evolve in identi-
cal ways. Random effects can cause differences - sometimes significant
differences- among replicates. As we will see in our studies, rather than
being an annoying problem such differences can be illuminating and lead
to a deeper understanding of a population's dynamics and their causal
mechanisms.

The ability to manipulate cultures is also a critical feature of the Tri-
bolium system when used as an experimental animal model. It is easy
to accomplish temporal variations in environmental factors such as

2.2 | The Flour Beetle
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Costatino et	al.	(1995)

à Chaos!	In	a	jar!

“Modeling” &	Differential	equations



Solving	DEs (+	a	computational	aside)

à Differential	equations	are		very	common/useful	tool	in	our	toolbox....

In	a	nutshell,	we	are	very	good	at	describing	how	things	change....

Kutz (2013)

...	but	less	good	at	finding	solutions	to	the	the	
corresponding	equations	(though	a	variety	of	analytic	
methods	certainly	are	in	place)

Idea:	Since	equations	tell	us	how	things	change,	numerically	integrate	to	find	solution(s)	

Approximation:

à This	is	called	Euler’s	method	(very	basic,	but	a	bit	beyond	the	scope	of	1st year	PHYS	1420)



“Mathematical	Modeling”

Bender

“Mathematics	and	physical	science	each	had	important	effects	on	the
development	of	the	other.	Mathematics	is	starting	to	play	a	greater	
role	in	the	development	of	the	life	and	social	sciences,	and	these	
sciences	are	starting	to	influence	the	development	of	mathematics.”

“We	begin	with	a	definition	based	on	the	previous	discussion:	A	
mathematical	model	is	an	abstract,	simplified,	mathematical	construct	
related	to	a	part	of	reality	and	created	for	a	particular	purpose.	[...]	As	
far	as	a	model	is	concerned	the	world	can	be	divided	into	three	parts:

Two	key	ingredients	should	be	apparent	here:
• Figuring	out	what	question	you	want	to	try	to	answer
• What	assumptions	you	are	willing	to	make



“Mathematical	Modeling”

Bender

Just	as	Polya suggests	a	means	to	
approach	solving	problems,	so	does	
Bender	re	modeling....	

“Model	building	involves	imagination	and	skill.	Giving	rules	for	doing	it	is	like	listing	rules	
for	being	an	artist;	at	best	this	provides	a	framework	around	which	to	build	skills	and	
develop	imagination.	It	may	be	impossible	to	teach	imagination.”

1. Formulate	the	problem
2. Outline	the	model
3. Is	it	useful?
4. Test	the	model

à This	sounds	a	lot	easier	than	it	is.	
So	let	us	jump	in	by	looking	at	some	
examples	and	trying	it	ourselves....



Ex.

Question:	How	fast	does	a	person	learn?



Ex.

Hughes-Hallett et	al.	(2005)

Question:	How	fast	does	a	person	learn?

(very)	Simple	model:			Rate	a	person	learns	=	Percentage	of	task	not	yet	learned	

dy

dt
= 100� yy is	the	percentage	learned	as	a	

function	of	time	t

524 Chapter Eleven DIFFERENTIAL EQUATIONS

} X.tr WHATISA DIFFERENTIALEQUATION?

h'!*w Fast D*es e Pers*n Le*rn?
Suppose we are interested in how fast an ernployee learns a new task. One theory claims that th:
more the ernployee already knows of the task, the slower he or she learns. In other words. if u :-
the percentage of the task that has already been mastered, afi rly lrlt the rate at which the emplor e.
learns. then dgf,h decreases as y increases.

What can we say about y as a function of time, t? Figure 11.1 shows three graphs whose slop.-
rlylrlt, decreases as y increases. Figure 11.1(a) represents an employee who starts learning at I -
and who eventually masters 1007o of the task. Figure ll.l(b) represents an employee who star:.
later but eventually masters 1007o of the task. Figure 1l.l(c) represents an employee who stan-
learning at t : 0, but who does not master the whole task (since y levels off below 1007o).

(b) y(asapercent)(a) y(asapercent)

tu0
,/

IL -t

100 i
(c) y(asapercent)

100 I'/
L+

Figur* I1.'l : Possible graphs showing percentage of task learned, g, as a function of time, I

Setti*g up a *iffer*ntial *quati*n to fu1*dei l'**w a *erse* Lear*s

To describe more precisely how a person learns, we need more exact infbrmation about how r1y

depends on i7. Suppose, if time is measured in weeks, that

Rate a person learns Percentage oftask not yet learned.

Since g is the percentage iearned by time I (in weeks), the percentage not yet learned by that tin::
is 100 y. So we have

'! - ruu 'a.
clt

Such an equation, which gives information about the rate of change of an unknown function. r-
called a differential equatiotl.

SolvE*g the *ifferential €quatie* Nua:*riceiEy

Suppose that the person starts learning at time zero, so U : 0 when t : 0. Then initially the persi.:
is learnin-e at a rate

? - lnO-u, lOU ;pet rvt'ek.rlt
In other words, if the person were to continue leaming at this rate, the task would be mastered in .,

week. In fact, however, the rate at which the person iearns decreases, so it takes more than a wee\
to get close to mastering the ttisk. Let's assume a five-day work week and that the 1007a per \l'eer
learning rate holds for the whole first day. (lt doesn't, but we assume this for now.) One day is 1,:
of a week, so during the flrst day the person learns 100(1/rt) : 2A%, of the task. By the end of th.
first day the rate at which the person learns has theretbre been reduced to

! :,L)0 - 2U = g0, I p"r.ueck.tlt
Thus, during the second day the person learns 80(1/5) :16%, so by the end of the second day the
person knows 20 + 16 : 36%, of the task. Continuing in this fashion, we compute the approximate
y-valuesl in Table 11. l.
-|Ih;";;r"rr"r,"ro.-i.....9. ll.....lgdaysrvcrecomputcdbythcsamemethod.butomittedfromthetablL'.

y(t) = 100� Ce�tSolution	
(e.g.,	via	“separation	of	variables”)



Ex.

Hughes-Hallett et	al.	(2005)

y(t) = 100� Ce�t

11.1 WHAT IS A DIFFERENTIAL EOUATION?

Table '!1.'t Approrimate percentage o.f task learued as a.fwtction of time
Time (working days) i 0 3i4
Percentage learned 89.3

& F*rmul* f*r the S*iutE*n tc ti:* ffiifferenti*E Squati*n
A function U : J(t) which satislies the diflerential equation is called asolution. Figure 11.1 con-
tains graphs of possible solutions and Table I I .1 shows approximate numerical values of a solution
to the equation

"l -'t)tt-a'dt
Later in this chapter, we see how to obtain a formula tbr the solution:

'!l - loo -l Ce-t.
wl.rere C is a constant. To check that this fonnula is comect, we substitute into the differential
equation, giving:

Left side - n' : _.c,, t

tlt
Right side : 100 ,u - L00 (100 + Cc: L) - Ce-t.

Since we get the same result on both sides, g : 100tCe 1 is a solution of this differential equation.

Finding the &rhrtreny **nst*r:t: l*5tiai C*ndit!ens
To find a value for the arbitrary constant C, we need an additional piece of infbrmation-usually
the initial vah-re of y. If, for example, we are told that g - 0 when I : 0, then substituting into

r/-1oot,Cc t

shows us that
0-100 lCc:o, so C: 100.

So the function'q : 100 - 100e ' satisfies the differential equation and the condition that.g - g
when f : 0.

Th* Fer*ily of $eluti*n*
Any solution to this differential equation is of the form y - 100 + Ce: t for some constant C. Like
a family of antiderivatives. this family contains an arbitrary constant! Cl. We say that the general
solution to the dillerential equation dyldt:100 - 37 is the family of frinctions 9 - 100 I Ce L.

The solution 3y - 100 - 100r: I that satisfies the difl'erential equation together with the initial
condition that 'y - 0 when t - 0 is called a partit:ulur solution. The differential equation and
the initial condition together are cal1ed at initial value prcblenr. Several members of the family of
solutions are graphed in Figure I 1.2.

Figure 1l,3: Solution curves for d.u ld,t : 100
Members of the farnily 9 - 100 I C)e t

59.0 i (t] 2

C
- 100

50
C_

Ø Equilibrium	points?

Values	of	y(t)	where	dy/dt = 0

dy

dt
= 100� y

y(t)	=	100

Ø Stability?

Do	solutions	move	towards	or	
away	from	the	equilibrium	if	
starting	nearby?

stable	(solution	move	towards	y(t)	=	100
with	increasing	t)

Ø What	determines	the	value	of	C? initial	conditions	(à E&U	theorem!)

à Note	that	our	‘model’	(redundantly)	
allows	for	y greater	than	100



Some	further	common	examples

Exponential	growth/decay dP

dt
= kP P = P0e

kt

Solution

Newton’s	law	of	heating/cooling

“Newton	proposed	that	the	temperature	of	a	hot	object	decreases	at	a	rate	proportional	to	
the	difference	between	its	temperature	and	that	of	its	surroundings.	Similarly,	a	cold	object	
heats	up	at	a	rate	proportional	to	the	temperature	difference	between	the	object	and	its	
surroundings.”

11.5 GROWTH AND DECAY *4.3

T*hi* 1! "ri' Volume and outflow in Great Lakes

,,1" ^s l*3r l, - n.^3 *,-.r-(11"::*91:lfr1l i : !I:"iy:-sl1.. i ...Superior
Michigan
Erie
Ontario

t2.2
4.9

0.46
1.6

i 65.2
!| 158
Ii 175

I _?9?

Example2

Solution

According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by

Q:Qoe 038''

When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get

,- - hr(u'l) r6rears.
0.38

When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies

0.01Q0:Qo6 038t.

Solving for t gives
- ln(0.01)

0.38

l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.

temperature

lnitial
temperature ----*1.'"

-='--l.;_----
_.,..'_i:;::::i:ih ..- Room temperature

time

ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
temperatures

T (t) = T0 + Ce�↵t

Solution

Note:	Very	natural	place	to	think	
about	‘equilibrium	points’	and	their	
stability

Hughes-Hallett et	al.	(2005)

dT

dt
= ↵(T
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e.g.,	Nuclear	decay,	1st order	chemical	
reaction,	bacterial	growth



Stability

Newton’s	law	of	heating/cooling

T (t) = T0 + Ce�↵t

Solution

Hughes-Hallett et	al.	(2005)

11.5 GROWTH AND DECAY *4.3
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Michigan
Erie
Ontario

t2.2
4.9

0.46
1.6
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I _?9?
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giving
H :20.

Regardless of the initial temperature, Il always gets

result, 11 : 20 is called a stable eqtillbrium3 for 11'
closer and closer to 20 as t + oo. As a

' 
- 

B: [0-ekl
t

H :20 + 10e-kt
30

20

10

'\--=**-* * 1--._--.*-*:":=:.: 10

:20 - l}e-kt
t

Fig*r'* tt"**: H :20 is stable equilibrium (,k > 0) Figur*1tr.3T: B : 10 is unstable equilibrium (k > 0)

A different situation is disptayed in Figure 11.37, which shows solutions to the differential
equation 

{:t1r- r,01
d,t

for some fixed ,k > 0. Solving dB ldt: 0 gives the equilibrium B : 10, which is unstable because

if B starts near 10, it moves away as t ---+ oo.
In general, we have the following definitions.

i . en equilibrium solution is constant for all values of the independent variable. The graph

! o An equilibrium is stable if a small change in the initial conditions gives a solution which

i tends toward the equilibrium as the independent variable tends to positire infinity. 
:I ------ - - -' 
:

! . ,q.r equilibrium is unstable if a small change in the initial conditions gives a solution 
I

E tive infinity. 
.t.___-

Solutions which do not veer away from an equilibrium solution are also called stable. If the

differential equation is of the form y' : f (d, equilibrium solutions can be found by setting g/ to
zeto.

Exercises and Problems lor Section 11.5

ffix*r*is*e

L. Each curve in Figure 1 1.38 represents the balance rn a
bank account into which a single deposit was made at
time zero. Assuming continuously compounded interest,
find:

(a) The curve representing the largest initial deposit'
(b) The curve representing the largest interest rate'
(c) Two curves representing the same initial deposit'
(d) Two curves representing the same interest rate'

bank
balance (tV) (ilt)

l

\ i .i ..,,'
| ,'' :-t'

I -.1''l.r'
l!'- -'

(lt)

(r)

L_-. time

3In more advanced work, this behavior is described as asymptotic stability'

F!gur* t l.GS

Note:	Very	natural	place	to	think	
about	‘equilibrium	points’	and	their	
stabilitydT

dt
= ↵(T

o

� T )



Some	further	common	examples

Hughes-Hallett et	al.	(2005)

Falling	body:	Terminal	velocity

Assume	air	resistance	is	proportional	to	velocity,	the	Newton’s	2nd Law	leads	to:

m
dv

dt
= mg � kv

dv

dt
= � k

m

⇣
v � mg

k

⌘

v =
mg

k

⇣
1� e�kt/m

⌘
Solution

11.6 APPLICATIONS AND MODELING 553

Separating and integrating gives

Solving for u:

grves

l!-,*= !,, J'"
Itr r' ':',9 - kt-e.

$nl

l, - ry -, ktlrnlc: : r.-C r'-ktf,t

,,_ r# _ ,!s kti,t.,

where A is an arbitrary constant. We find A from the initial condition that the obiect starts frorn rest.
so r, - 0 when t : 0. Substituting

tn0o--+--l'"
, lrl(l

k:

Thus 
.. nlg 'tt'tg - L,tiu,. _ Utt , ktlrn.l 

.,'tt,.
The graph of this function is in Figure 11.215. The horizontal asymptote represents the terminal

veloci4', rn.q f 1.,:.

Air resistance, A'rr Terminal velocity

Force due to
gravily, rn,g

Figure 11.44; Forces acting on a falling object Figure 1 1.45: Velocity of falling dust peulicle assuming
that air resistance is kr.,

Notice that the terminal velocity can also be obtained from the differential equation by setting
tl r'f tlt U and solving lor r':

cl,t,nt*:mS 'kt'' :0 so ?r:

eompartmental Analysis: A Reservclr

trLlJ

k

Many processes can be modeled as a container with various solutions flowing in and out-for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city's
water reservoir, fed partly by clean water from a spring and partly by run-ofi from the surrounding
land. In New England, and many other areas with much snow in the winter, the run-off contains salt
which has been put on the roads to make them safe for driving. We consider the concentration of
salt in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the
rate at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially the rate at which the salt is
entering is less than the rate at which it is flowing out, and the quantity of salt in the lake decreases.
In either case, the salt concentration levels off at an equiiibrium value.

Note:	We	will	come	back	to	this	in	more	
detail	a	bit	later	in	the	semester…



A	word	of	caution.... (Part	II)
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Some	further	common	examples

Falling	body:	Terminal	velocity m
dv

dt
= mg � kv v =

mg

k

⇣
1� e�kt/m

⌘

Compartmental	models	
(e.g.,	salt	in	a	reservoir)
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Notice that the terminal velocity can also be obtained from the differential equation by setting
tl r'f tlt U and solving lor r':
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eompartmental Analysis: A Reservclr

trLlJ

k

Many processes can be modeled as a container with various solutions flowing in and out-for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city's
water reservoir, fed partly by clean water from a spring and partly by run-ofi from the surrounding
land. In New England, and many other areas with much snow in the winter, the run-off contains salt
which has been put on the roads to make them safe for driving. We consider the concentration of
salt in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the
rate at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially the rate at which the salt is
entering is less than the rate at which it is flowing out, and the quantity of salt in the lake decreases.
In either case, the salt concentration levels off at an equiiibrium value.

e.g.,	speed	
of	falling	
raindrop



Some	further	common	examples

Compartmental	models	(e.g.,	salt	in	a	reservoir)

“A	water	reservoir	holds	100	million	gallons	of	water	and	supplies	a	city	with	1	million	
gallons	a	day.	The	reservoir	is	partly	refilled	by	a	spring	which	provides	0.9	million	gallons	
a	day,	and	the	rest	of	the	water,	0.1	million	gallons	a	day,	comes	from	run-off	from	the	
surrounding	land.	The	spring	is	clean,	but	the	run-off	contains	salt	with	a	concentration	of	
0.0001	pound	per	gallon.	There	was	no	salt	in	the	reservoir	initially	and	the	water	is	well	
mixed	(that	is,	the	out-flow	contains	the	concentration	of	salt	in	the	tank	at	that	instant).”

Hughes-Hallett et	al.	(2005)



Some	further	common	examples

Compartmental	models	(e.g.,	salt	in	a	reservoir)
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& *i9fcr*nila€ Eqr*aii*r: f*r $*!t **n*e::tr*ti*r:
A water reservoir holds 100 million gailons of water and supplies a city with I million gallons a

day. The reservoir is partly relilled by a spring which provides 0.9 million gallons a day, and the
rest of the water, 0. I million gallons a day, comes liom run-off from the surrounding land. The
spring is clean, but the run-off contains salt with a concentration of 0.0001 pound per gallon. There
was no salt in the reservoir initially and the water is well mixed (that is, the out-flow contains the
concentration of salt in the tank at that instant). We {ind the concentration of salt in the reservoir a.
a function of time.

It is important to distinguish between the total quantity, Q, of salt in pounds, and the concen-
tration, C, of salt, in pounds/gallon, where

Concentration: C : Quantity of salt o /11,\
100 rnilliorr \ gol /

(The volume of the reservoir is 100 million pounds.) We will lind Q first, and then C. We know thai

Rate of change-of : Rate salt entering - Rate salt leaving.
quantitY of salt

Salt is entering through the run-off of 0. 1 million gallons per day, with each gallon containing 0.000 i
pound of salt. Therefore

Rate salt entering - Concentration . Volume per day

uu()r.)r f ,o ) u rf Tl!9!-ryr)
\erl/ \ dal /

: o.oooor (mittron tu) : lo rblrlay.\duv)
Salt is leaving in the million gallons of water used by the city each day . Thus

Rate salt leaving : Concentration ' Volume per day
O / tr, \ /million pal\ O: rc.rrb, (a/' [ *- ) -ffi rb'dar

Therefore Q satisfies the di1I'erential equation

We factor out 71100: -0.1 and separate variables, giving

9: -.o.oro looo),
dt

I na :- [nnra,.l () t000 J
1,,lQ loool : 0.01t + k,

8 - 1000 - r1e-o o1r.

There is no salt initially, so we substitute Q : 0 when t : 0:

0 1000 - Aeo giving ,4 - -1000

Volume of water

a 1000 - 1000e-o o1t

Q - 1000(1 - e-o 01/) pounds

doo_:l(,__elt, 100

Thus

SO
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“A	water	reservoir	holds	100	million	gallons	of	water	and	supplies	a	city	with	1	million	
gallons	a	day.	The	reservoir	is	partly	refilled	by	a	spring	which	provides	0.9	million	gallons	
a	day,	and	the	rest	of	the	water,	0.1	million	gallons	a	day,	comes	from	run-off	from	the	
surrounding	land.	The	spring	is	clean,	but	the	run-off	contains	salt	with	a	concentration	of	
0.0001	pound	per	gallon.	There	was	no	salt	in	the	reservoir	initially	and	the	water	is	well	
mixed	(that	is,	the	out-flow	contains	the	concentration	of	salt	in	the	tank	at	that	instant).”

Hughes-Hallett et	al.	(2005)
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Think	about	units!



Ex. (“The	Ladder	Problem”)



% ### LadderOPT.m ###   5.21.09

% simple code to numerically verify solution to Neuhaser's ladder
% optimization problem

clear
% ----------
d= 20;  % length of space between fence and house
h= 13;  % height of fence
% ---------

theta= linspace(0,pi/2,1000);       % create range of possible angles

% length of ladder as a function of theta (this is the function to minimize)
L= d./cos(theta) + h./sin(theta);
Lprime= d*(sin(theta))./(cos(theta).^2) - h*(cos(theta))./(sin(theta).^2); % derivative of above 
function

% analytically derived solution for optimal angle; should match where Lprime = 0 
thetaOPT= atan( (h/d)^(1/3) );
Lopt = h/sin(thetaOPT) + d/cos(thetaOPT);   % corresponding minimum ladder length

% ====
figure(1); clf;
h1= plot(theta,L); grid on; hold on;
h2= plot(theta,Lprime,'r-');
axis([-0.1 pi/2+0.1 -5 100]);
ylabel('Length or deriv. [arb]'); xlabel('angle re fence [deg]');
title('Numerical check re ladder optimization problem');
%h3= plot(thetaOPT,Lopt,'kx','MarkerSize',8,'LineWidth',2);
h3= stem(thetaOPT,Lopt,'k--')
legend([h1 h2 h3],'ladder length','deriv. of length','shortest length','Location','SouthWest')

LadderOPT.m



Reference

dT

dt
= ↵(T

o

� T )

Note:	This	is	essentially	the	same	form	of	
eqn.	as	others	we	saw	earlier	(e.g.,	
Newton’s	Law	of	Cooling)



Reference (SOL)

T (t) = T0 + Ce�↵t
Note:	The	solution	is	essentially	the	
same	too,	just	written	in	a	more	
general	way



Reference (SOL)


