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Key Topics & Concepts (re Today)

— Class reps needed (email me if you want to volunteer)

Some relevant underlying concepts of the day...

> Problem solving (revisited) & quantitative reasoning

» Mechanical motivations....

> Modeling & notion of differential equations

Review: algebra, geometry, coordinate systems, differential calculus,
integral calculus, differential equations, etc....



Types of “problems”

Some types of problems we’ll deal with:

Note: For the most part, these

> Those w/ known answers (e.g., yes/no, %, etc.....)  will be the type of problems you
encounter on HW and exams

> Open-ended (i.e., answers typically lead to more questions)

e.g., Why is the sky blue?

> Lateral thinking (i.e., “outside the box”)
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Some types of problems we’ll deal with:

> Those w/ known answers (e.g., yes/no, %, etc.....)
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> Fermi problems (e.g., estimate an order of magnitude)



52. Estimate the number of (a) atoms and (b) cells in your body.

Wolfson



52. Estimate the number of (a) atoms and (b) cells in your body.

Be thoughtful/careful w/ units!

> | weigh ~200 Ibs. (that’s ~91 kg)

> Assume I’'m made up entirely of water. Density of water is 1000 kg/m”3

> Avogadro’s # (6.02x10%3/mol) tells me # of particles in one mole

> Molecular mass of water is ~18 (i.e., one mole of water has a mass of about
18 grams) =2 I’'m made up of ~91000/18 = 5060 mols

» Thus there are ~5056 x 6.02x10%3 = 3x10%7 atoms in my body

- But is this even right!?!

Wolfson



SOL

Still not clear if either of
us are right(!!)



https://slate.com/human-interest/2019/09/back-envelope-math-science-rabbit-holes.html



Approaches to Problem Solving

- This is a reasonable starting point. But keep in mind that ideally you'll
find an approach/method that works best for you!



von Baeyer



Mechanics

Apollonius of Perga Aristotle G. Galileo l. Newton

von Baeyer



“Modeling”

Jumping ahead slightly for the moment....
4.1 The Wrong Question

Actually, “What keeps things moving?” is the wrong question. In the early 1600s,
Galileo Galilei did experiments that convinced him that a moving object has an intrinsic
“quantity of motion” and needs no push to keep it moving (Fig. 4.1). Instead of answering
“What keeps things moving?,” Galileo declared that the question needs no answer. In so
doing, he set the stage for centuries of progress in physics, beginning with the achieve-
ments of Issac Newton and culminating in the work of Albert Einstein.

The Right Question

Our first question—about why the spacecraft keeps moving—is the wrong question. So
what’s the right question? It’s the second one, about why the baseball’s motion changed.
Dynamics isn’t about what causes motion itself;|it’s about what causes changes in motion.
Changes include starting and stopping, speeding up and slowing down, and changing
direction. Any change in motion begs an explanation, but motion itself does not. Get used
to this important idea and you’ll have a much easier time with physics. But if you remain a
“closet Aristotelian,” secretly looking for causes of motion itself, you’ll find it difficult to
understand and apply the simple laws that actually govern motion.

— The notion of change is a lynchpin of physics....

Wolfson



“Modeling”

> To help put some context in place for the physics ahead, let’s take a slight detour....

> Calculus provides wonderful tools to help study change

> In particular, a very useful extension of calculus is known as differential equations

Whether you realize it
or not, you have
already been dealing
with DEs in some
fashion....

> Here comes the fun part: Many problems fall
under the purview of mathematical modeling



“Mathematical Modeling”

From the preface (1978)

“This book is designed to teach students how to apply
mathematics by formulating, analyzing, and criticizing models.”

“The first part of the book requires only elementary calculus and,
in one chapter, basic probability theory.”

“Although the level of mathematics required is not high, this is not
an easy text: Setting up and manipulating models requires
thought, effort, and usually discussion.”

“Often problems have no single best answer, because different models can illuminate
different facets of a problem. Discussion of homework in class by the students is an
integral part of the learning process; in fact, my classes have spent about half the
time discussing homework..”

“I'd appreciate hearing about any errors....”

Bender



“Mathematical Modeling” Ch.1 - “What is modeling?”

“The theoretical and scientific study of a situation centers around a model,
that is, something that mimics relevant features of the situation being studied.
For example, a road map, a geological map, and a plant collection are all
models that mimic different aspects of a portion of the earth's surface.”

“The ultimate test of a model is how well it performs when it is applied to the
problems it was designed to handle. (You cannot reasonably criticize a geological map
if a major highway is not marked on it; however, this would be a serious deficiency in a
road map.) When a model is used, it may lead to incorrect predictions. The model is
often modified, frequently discarded, and sometimes used anyway because it is better

than nothing. This is the way science develops.”

“Here we are concerned exclusively with mathematical models, that is, models that
mimic reality by using the language of mathematics. [...] What makes mathematical

models useful? If we "speak in mathematics, then:

Bender



“Modeling” & Differential equations (DEs)

Harmonic oscillator

. . 2
- A very common/useful tool in our toolbox.... T+ Y + Wy = 0

Note: Though DEs pervade

Wave equation much of 1420 material,
you are not expected to
a2¢ 1 aQ’QD become adept at solving
—n — o T~ a them for 1420 e .
6372 CQ 8t2 Note: This just a specific case of

Newton’s 2" law (F=ma)!

Laplace’s equation

82f 82]0 azf Maxwell’s equations
72 __ = J _
Af_vf_8x2+8y2+8z2 0

Several basic flavors apparent:
> Ordinary (ODE)

> Partial (PDE)

> Scalar vs. Vector




“Modeling” & Differential equations

Lorenz equations

dx

P =o(y — )
dy

— =rr—y— Iz
dt Y

d
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- Chaos!

SIR model
(‘compartmental’ model in epidemiology)
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“Modeling” & Differential equations

Discrete LPA Model (Cushing, Costantino, et al.)

Cra
Eggs flour beetle P“pae
S life cycle
Larvae
Cer |

- Chaos! In ajar!

Costatino et al. (1995)



Solving DEs (+ a computational aside)

—> Differential equations are very common/useful tool in our toolbox....

In a nutshell, we are very good at describing how things change....

ay _ t, 1.
a f(ty) (7.1.1)

... but less good at finding solutions to the the
corresponding equations (though a variety of analytic
methods certainly are in place)

Idea: Since equations tell us how things change, numerically integrate to find solution(s)

dy Yot1 — Vn
= f(t, = ~ f(t,, . 7.1.4
Approximation: Yoir1 =Y, + At f(tn,y,) (7.1.5)

- This is called Euler’s method (very basic, but a bit beyond the scope of 15t year PHYS 1420)

Kutz (2013)



“Mathematical Modeling”

“Mathematics and physical science each had important effects on the
development of the other. Mathematics is starting to play a greater
role in the development of the life and social sciences, and these
sciences are starting to influence the development of mathematics.”

“We begin with a definition based on the previous discussion: A
mathematical model is an abstract, simplified, mathematical construct
related to a part of reality and created for a particular purpose. [...] As
far as a model is concerned the world can be divided into three parts:

Two key ingredients should be apparent here:
- Figuring out what question you want to try to answer
«  What assumptions you are willing to make

Bender



“Mathematical Modeling”

Just as Polya suggests a means to
approach solving problems, so does
Bender re modeling....

“Model building involves imagination and skill. Giving rules for doing it is like listing rules
for being an artist; at best this provides a framework around which to build skills and
develop imagination. It may be impossible to teach imagination.”

HwnN e

Formulate the problem
Outline the model

Is it useful?

Test the model

—> This sounds a lot easier than it is.
So let us jump in by looking at some
examples and trying it ourselves....

Bender



Question: How fast does a person learn?



Question: How fast does a person learn?

(very) Simple model: Rate a person learns = Percentage of task not yet learned

yis the percentage learned as a @ = 100 — y
function of time ¢ at
Solution y(t) = 100 — Ce—t

(e.g., via “separation of variables”)

Hughes-Hallett et al. (2005)



—= - Note that our ‘model’ (redundantly)
dy Y allows for y greater than 100

Y 100 —
dt J

y(t) = 100 — Ce*

100

» Equilibrium points?

Values of y(t) where dy/dt = 0

1) =100 Figure 11.2: Solution curves for dy/dt = 100 — vy:
Members of the family y = 100 4+ Ce ™!
» Stability?
Do solutions move towards or stable (solution move towards y(¢) = 100
away from the equilibrium if with increasing 1)

starting nearby?

» What determines the value of C? initial conditions (= E&U theorem!)

Hughes-Hallett et al. (2005)



Some further common examples

Exponential growth/decay

Newton’s law of heating/cooling

dP

= —kP

dt

Solution

P = Pyef

e.g., Nuclear decay, 1°t order chemical
reaction, bacterial growth

“Newton proposed that the temperature of a hot object decreases at a rate proportional to
the difference between its temperature and that of its surroundings. Similarly, a cold object
heats up at a rate proportional to the temperature difference between the object and its

surroundings.”

drl

T,-T
o = ol )

Solution

T(t) =Ty + Ce

temperature Note: Very natural place to think
about ‘equilibrium points’ and their
Initial "I\ stabilityoI i
temperature
P \*&.\“&
M g
NN

e

<— Room temperature

time

Hughes-Hallett et al. (2005)



Stability

Newton'’s law of heating/cooling

Note: Very natural place to think
about ‘equilibrium points’ and their

t t
dT B 7 - emperature Stability
dt o Oé( o ) Initial —" "
temperature —__ ~
Solution e

T(t) =Ty + Ce™

<— Room temperature

time

is a horizontal line.

tive infinity.

e An equilibrium solution is constant for all values of the independent variable. The graph

e An equilibrium is stable if a small change in the initial conditions gives a solution which
tends toward the equilibrium as the independent variable tends to positive infinity.

e An equilibrium is unstable if a small change in the initial conditions gives a solution
curve which veers away from the equilibrium as the independent variable tends to posi-

Hughes-Hallett et al. (2005)



Some further common examples

Note: We will come back to this in more

_ _ _ detail a bit later in the semester...
Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2"d Law leads to:

dv Air resistance, kv
m— =mg — kv
dt
Force due to
dv k ( mgqg > gravity, mg
- = v — ——
dt m k ' |

Figure 11.44: Forces acting on a falling object

Solution v = % (1 _ e—kt/m)

Hughes-Hallett et al. (2005)



A word of caution.... (Part Il)

Don’t Drink and Derive

o°u 1 0%u p
—+—5—=5=0 E = 4/‘2‘8(17 p=my
ot~ ¢ ox” 72
|

m,m,m “ ViE=—p

F,=G—13= f(x)= [ dkg(k)e™ Ho
7
V-B=4r E 3
V=I—-R C
oL PV =n+R+T

_R? oy ~q
—VY¥+TV(F An !
2m ("= ot’ P

n,sM @, =1, S,
nA=2dtan@

— 1 2 ) )
F \/ mda y=x X = ;ar‘ +V,IT + X,



A word of caution.... (Part Il)







Some further common examples

m— =mg — kv v = —=

Falling body: Terminal velocity dv mg (1 B e—kt/m>
dt k

v (velocity)

g

k

Terminal velocity

e.g., speed
of falling
raindrop

t (time)

Figure 11.45: Velocity of falling dust particle assuming
that air resistance is kv

Compartmental models —Il\ ulﬁ

(e.g., salt in a reservoir) |

Tank 1 | |  Tank2

http://tutorial.math.lamar.edu/



Some further common examples

Compartmental models (e.g., salt in a reservoir)

“A water reservoir holds 100 million gallons of water and supplies a city with 1 million
gallons a day. The reservoir is partly refilled by a spring which provides 0.9 million gallons
a day, and the rest of the water, 0.1 million gallons a day, comes from run-off from the
surrounding land. The spring is clean, but the run-off contains salt with a concentration of
0.0001 pound per gallon. There was no salt in the reservoir initially and the water is well
mixed (that is, the out-flow contains the concentration of salt in the tank at that instant).”

Hughes-Hallett et al. (2005)



Some further common examples

Compartmental models (e.g., salt in a reservoir)

“A water reservoir holds 100 million gallons of water and supplies a city with 1 million
gallons a day. The reservoir is partly refilled by a spring which provides 0.9 million gallons
a day, and the rest of the water, 0.1 million gallons a day, comes from run-off from the
surrounding land. The spring is clean, but the run-off contains salt with a concentration of
0.0001 pound per gallon. There was no salt in the reservoir initially and the water is well
mixed (that is, the out-flow contains the concentration of salt in the tank at that instant).”

Think about units!
It is important to distinguish between the total quantity, (2, of salt in pounds, and the concen-
tration, C, of salt, in pounds/gallon, where

Quantity of salt Q ( 1b )

Volume of water 100 million \ gal

Concentration = C =

Rate of change of . _
. — Rate salt entering — Rate salt leaving.

quantity of salt

4 == | § Q
Rate salt entering = Concentration - Volume per day W = — ﬁ

Hughes-Hallett et al. (2005)



Ex. (“The Ladder Problem”)



LadderOPT.m

oo

### LadderOPT.m ### 5.21.09

% simple code to numerically verify solution to Neuhaser's ladder
% optimization problem

d= 20; % length of space between fence and house
h= 13; % height of fence
theta= linspace(0,pi/2,1000); % create range of possible angles

% length of ladder as a function of theta (this is the function to minimize)
L= d./cos(theta) + h./sin(theta);

Lprime= d*(sin(theta))./(cos(theta).”2) - h*(cos(theta))./(sin(theta).”2); % derivative of above
function

% analytically derived solution for optimal angle; should match where Lprime = 0

thetaOPT= atan( (h/d)"(1/3) );

Lopt = h/sin(thetaOPT) + d/cos(thetaOPT); % corresponding minimum ladder length

[ ——

figure(l); clf;

hl= plot(theta,L); grid on; hold on;

h2= plot(theta,Lprime, 'r-"');

axis([-0.1 pi/2+0.1 =5 100]);

ylabel( 'Length or deriv. [arb]'); xlabel('angle re fence [deg]');

title('Numerical check re ladder optimization problem');

$h3= plot(thetaOPT,Lopt, 'kx', 'MarkerSize',8, 'LineWidth',2);

h3= stem(thetaOPT,Lopt, 'k--")

legend([hl h2 h3],'ladder length',6 'deriv. of length', 'shortest length', 'Location’', 'SouthWest')



Reference

Note: This is essentially the same form of
egn. as others we saw earlier (e.g.,
Newton’s Law of Cooling)

dT
& T, —T
Ol )



Reference (SOL)

Problem 1. A first-order, linear differential equation with constant coefficients and a constant
inhomogeneous (drive or input) term has an exponential solution. Therefore, the solution can be
written in the form

n(t) = Neo + (no - noo) e 7,

where ng = n(0) is the initial value of n(t) and n,, = lim;_,, n(t) is the final value of n(t). The
form of this solution can be verified by evaluating n(¢) at ¢ = 0 and ¢t — oo. Substitution into the
differential equation shows that this solution satisfies the differential equation. The solutions for
cases i-vi are shown in Figure 1. The solutions for part a (i and i1) have the same initial and final
values but different time constants (by ¢ = 10 s, curve ii is just above 6 and has not yet reached
its final value of 10). The solutions for part b (iii and iv) have the same initial values and different
final values. Although curve iv was calculated with the same time constant as in iii, it doesn’t make
sense to compare the time constants of the curves, since curve iv isn’t changing. The solutions for
part ¢ (v and vi) have different initial and final values and the same time constants.

Note: The solution is essentially the

same too, just written in a more T(t) — TO 4+ C’e—at

general way



Reference (SOL)




