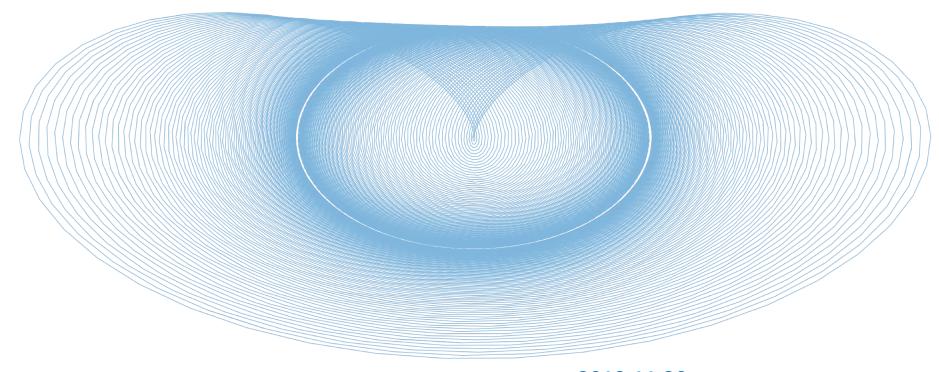
PHYS 1420 (F19) Physics with Applications to Life Sciences



2019.11.20

Relevant reading:

Kesten & Tauck ch. 12.1-12.4

Christopher Bergevin York University, Dept. of Physics & Astronomy

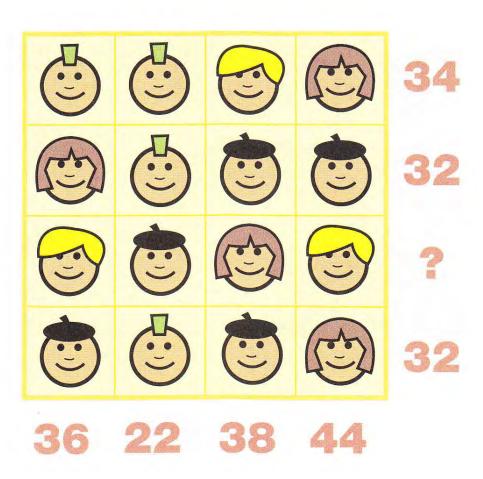
Office: Petrie 240 Lab: Farq 103

cberge@yorku.ca

Ref. (re images): Wolfson (2007), Knight (2017), Kesten & Tauck (2012)

Sum People

Work out which number is represented by which person and fill in the question mark

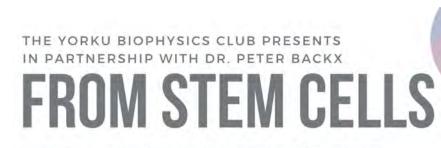


Announcements & Key Concepts (re Today)

- → Online HW #8 (re fluids): Posted and due Friday (11/22)
- → Final exam: Saturday, Dec. 14 (start preparing!)

Some relevant underlying concepts of the day...

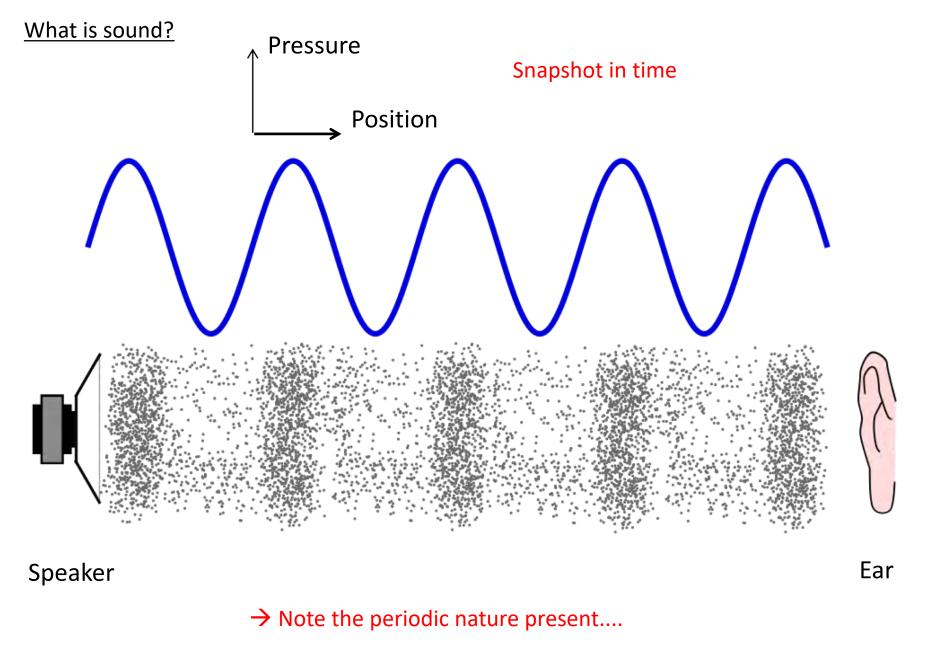
- > Things that oscillate...
- > Harmonic oscillator
- Oscillations: Basics
- > Harmonic oscillator

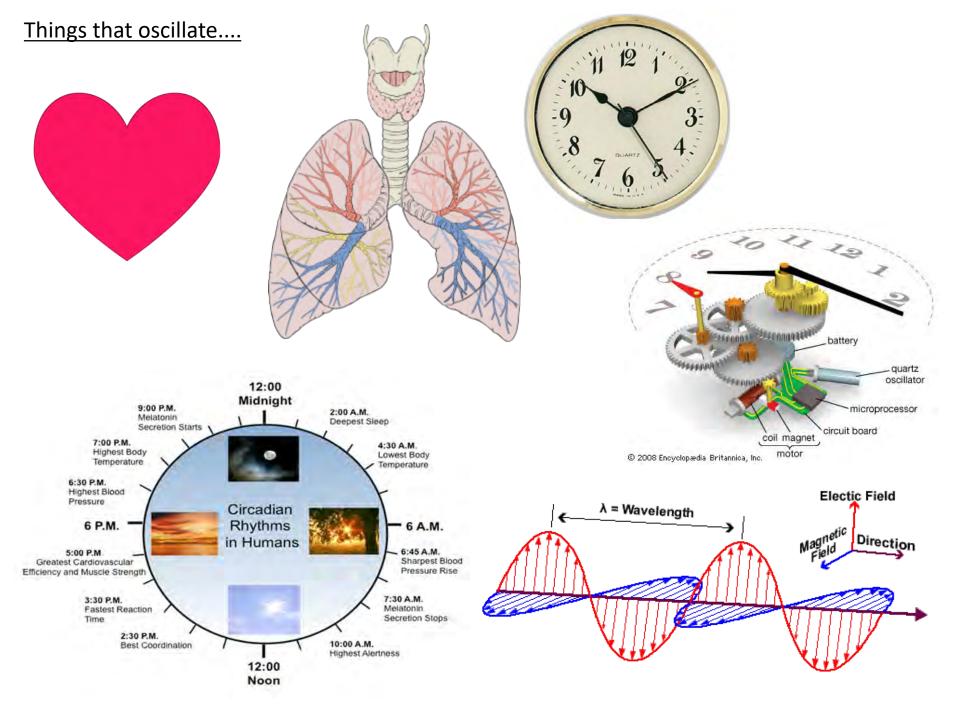


TO ARRHYTHMIA A LECTURE ON USING TISSUES GENERATED FROM STEM CELLS TO BETTER-UNDERSTAND CARDIAC ARRHYTHMIAS THURSDAY, NOVEMBER 21ST 5:30-7:00PM REFRESHMENTS PROVIDED

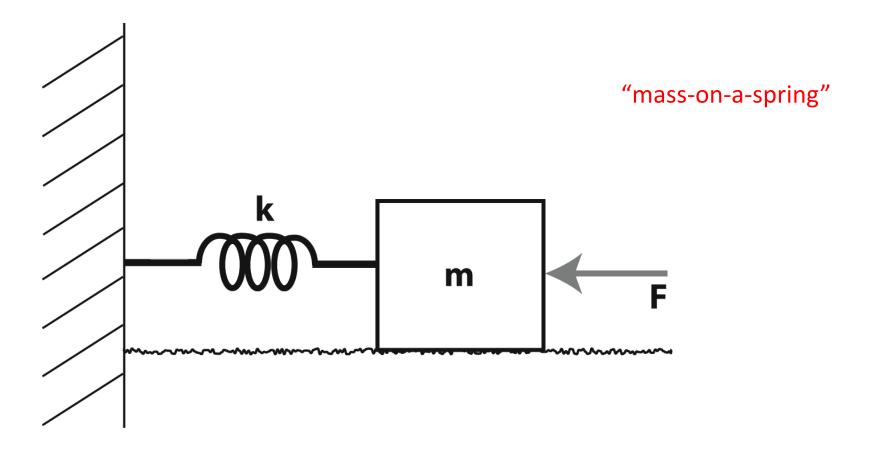
PETRIE SCIENCE & ENGINEERING BUILDING

RM 317





Harmonic oscillator



> One of the most fundamental/canonical problems in physics

Review (re "Measuring Force")

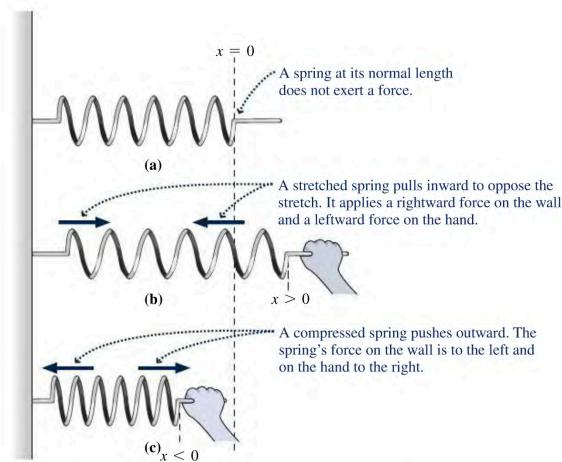


FIGURE 4.19 A spring responds to stretching or compression with an oppositely directed force.

Springs are an intuitive means (i.e., compression/extension)

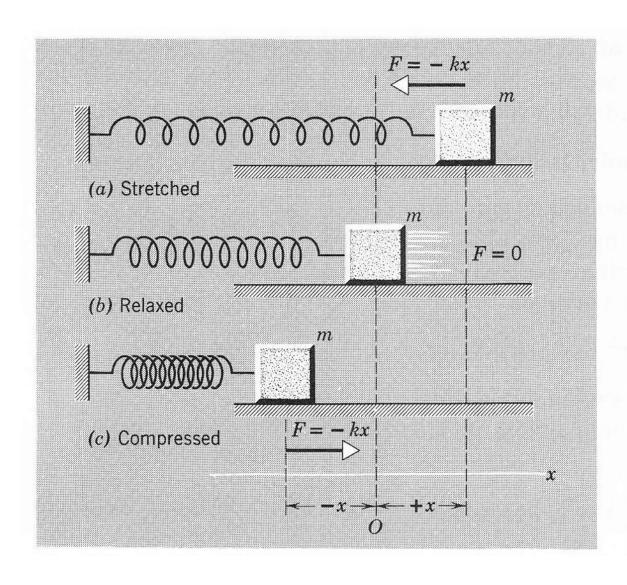
→ Implicit in this idea is the notion of **energy** (e.g., the spring stores energy as it is displaced from equilibrium). We'll revisit this idea soon...

$$F_{\rm s} = -kx$$

Hooke's Law (ideal spring)

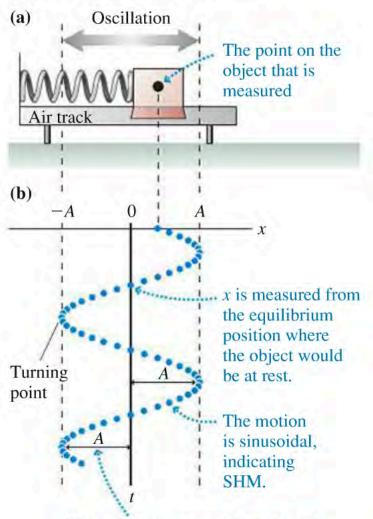
→ *k* is called the *stiffness* (or "spring constant")

If you know k, than measuring how much compression (i.e., x) tells you something about the associated forces



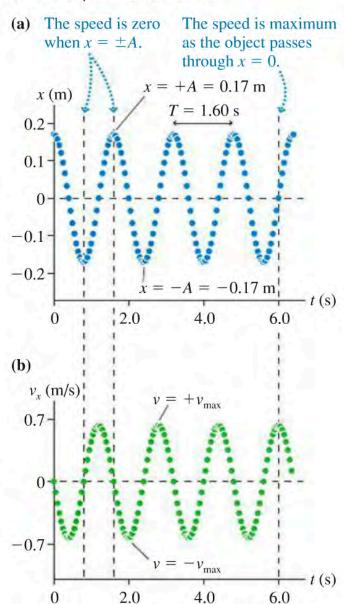
A simple harmonic oscillator. The force exerted by the spring is shown in each case. The block slides on a frictionless horizontal table.

A prototype simpleharmonic-motion experiment.



The motion is symmetrical about the equilibrium position. Maximum distance to the left and to the right is *A*.

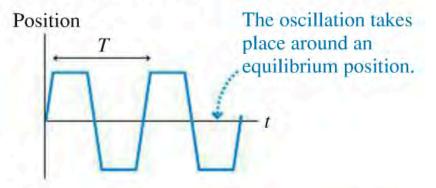
Position and velocity graphs of the experimental data.



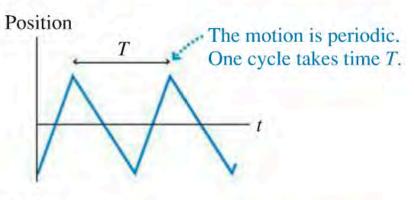
<u>Periodicity</u>

Position

Examples of position-versustime graphs for oscillating systems.



 $1 \text{ Hz} \equiv 1 \text{ cycle per second} = 1 \text{ s}^{-1}$



Units of frequency

Frequency	Period
$10^3 \text{ Hz} = 1 \text{ kilohertz} = 1 \text{ kHz}$	1 ms
$10^6 \mathrm{Hz} = 1 \mathrm{megahertz} = 1 \mathrm{MHz}$	$1 \mu s$
$10^9 \text{Hz} = 1 \text{gigahertz} = 1 \text{GHz}$	1 ns

This oscillation is sinusoidal.

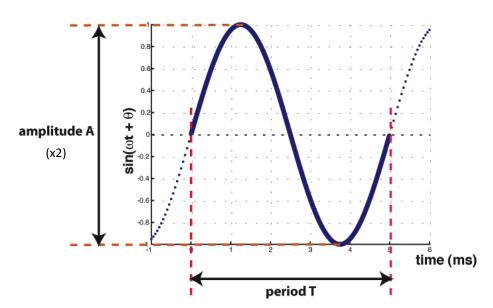
ω (in rad/s) = $\frac{2\pi}{T}$ = $2\pi f$ (in Hz)

Angular frequency

Trigonometry Review: Sinusoids

Sinusoid has 3 basic properties:

- i. Amplitude height
- ii. Frequency = 1/T [Hz]
- iii. Phase tells you where the peak (needs a reference)

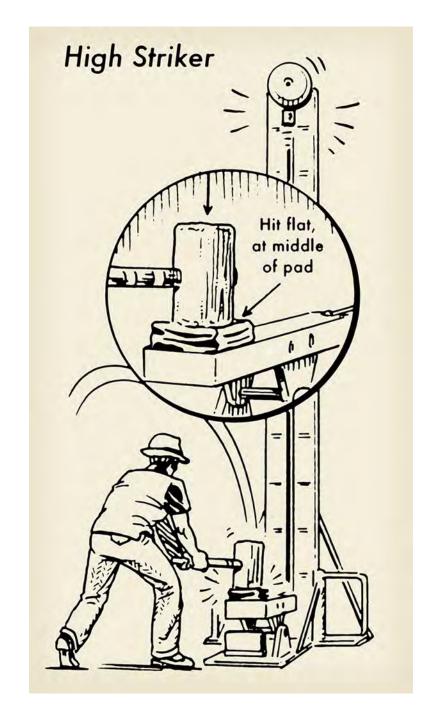


⇒ Phase reveals timing information

<u>Trigonometry Review</u>: Magnitude

→ Size is key here

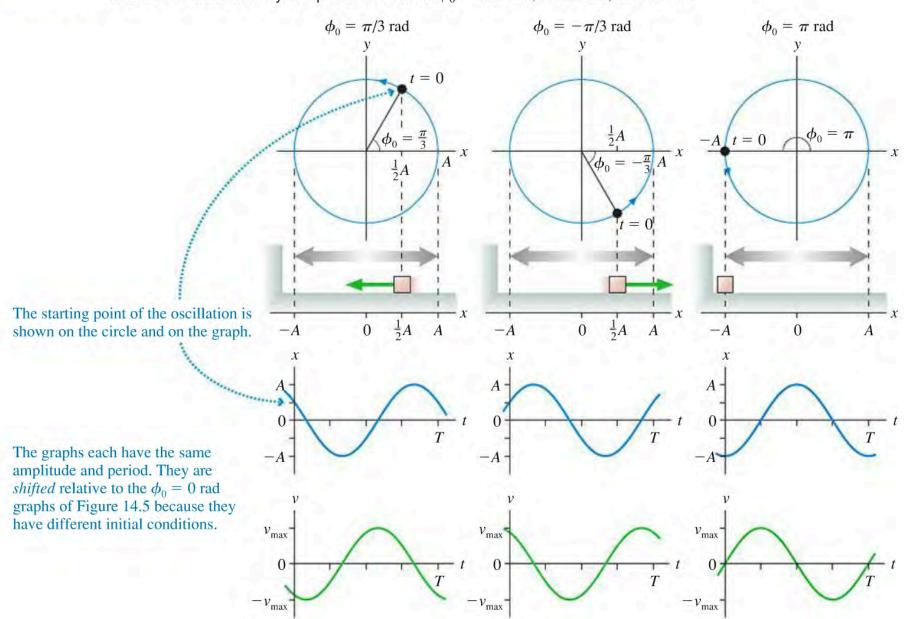
Magnitude = Amplitude



Trigonometry Review: Phase

→ 'Timing' is key here (on a cycle-by-cycle basis)

Oscillations described by the phase constants $\phi_0 = \pi/3 \text{ rad}$, $-\pi/3 \text{ rad}$, and $\pi \text{ rad}$.



Harmonic oscillator: Theory

> Let's consider the simplest case: Undamped, Undriven (aka "simple harmonic oscillator")

$$F = ma = m\ddot{x} = -kx$$

Newton's Second Law & Hooke's Law

$$\ddot{x} + \frac{k}{m}x = 0$$

Second order differential equation

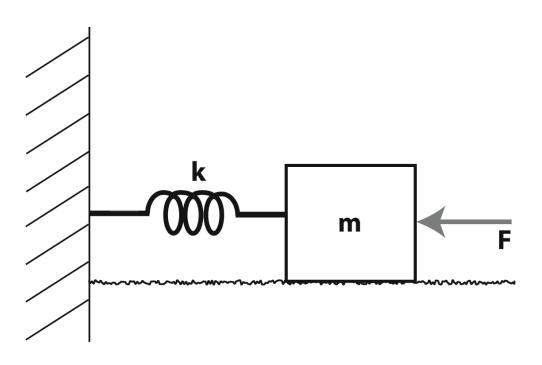
$$x(t) = A\cos\left(\omega_o t + \phi\right)$$

⇒ Solution is oscillatory!

$$\omega_o = \sqrt{k/m}$$

System has a natural frequency

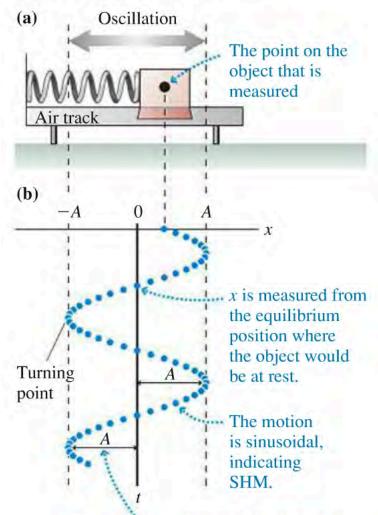
Harmonic oscillator



$$x(t) = A\cos(\omega_o t + \phi)$$

$$\omega_o = \sqrt{k/m} \qquad f = \frac{1}{T}$$

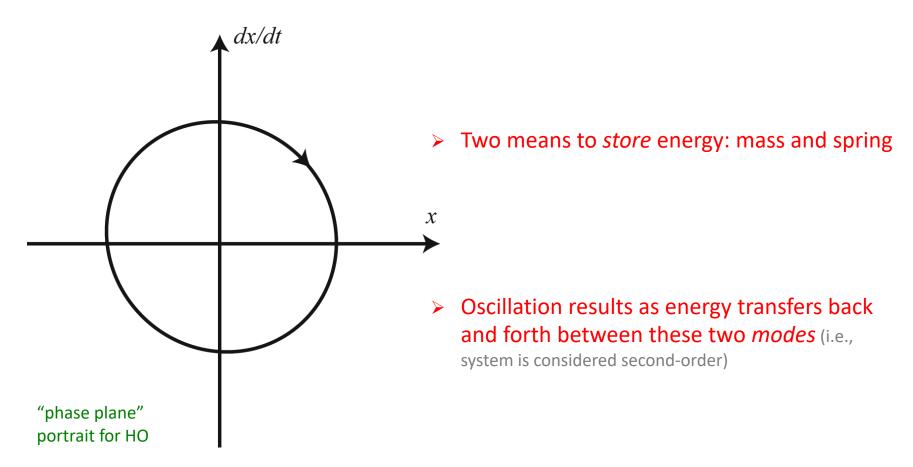
A prototype simpleharmonic-motion experiment.



The motion is symmetrical about the equilibrium position. Maximum distance to the left and to the right is *A*.

Harmonic oscillator: Energy

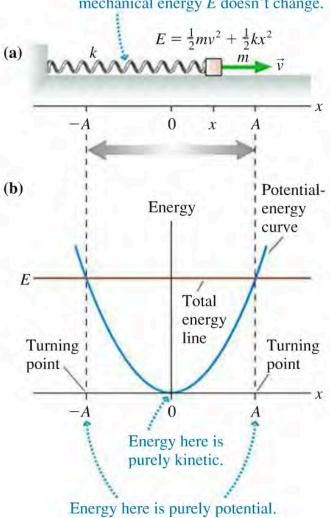
Consider the system's energy:
$$E = T + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$



Harmonic oscillator: Energy

The energy is transformed between kinetic energy and potential energy as the object oscillates, but the mechanical energy E = K + U doesn't change.

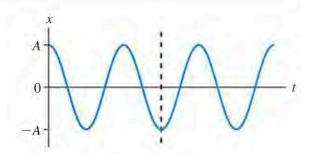
Energy is transformed between kinetic and potential, but the total mechanical energy *E* doesn't change.



Ex.

STOP TO THINK 14.4 This is the position graph of a mass on a spring. What can you say about the velocity and the force at the instant indicated by the dashed line?

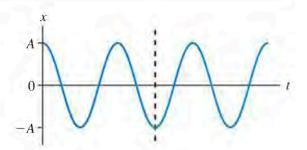
- a. Velocity is positive; force is to the right.
- b. Velocity is negative; force is to the right.
- c. Velocity is zero; force is to the right.
- d. Velocity is positive; force is to the left.
- e. Velocity is negative; force is to the left.
- f. Velocity is zero; force is to the left.
- g. Velocity and force are both zero.



Ex. (SOL)

STOP TO THINK 14.4 This is the position graph of a mass on a spring. What can you say about the velocity and the force at the instant indicated by the dashed line?

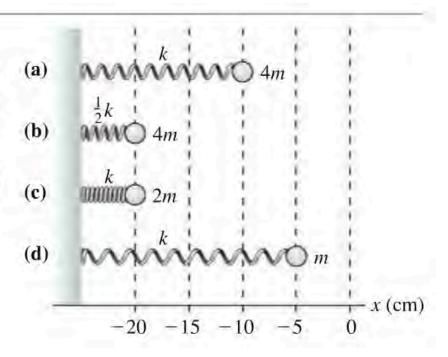
- a. Velocity is positive; force is to the right.
- b. Velocity is negative; force is to the right.
- c. Velocity is zero; force is to the right.
- d. Velocity is positive; force is to the left.
- e. Velocity is negative; force is to the left.
- f. Velocity is zero; force is to the left.
- g. Velocity and force are both zero.



C

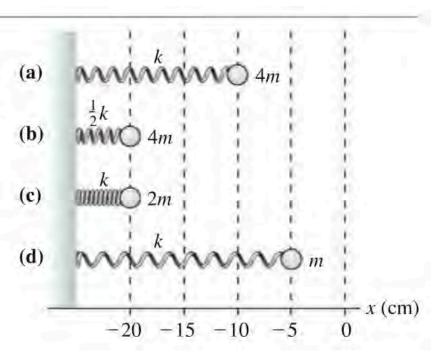
STOP TO THINK 14.3

The four springs shown here have been compressed from their equilibrium position at x = 0 cm. When released, the attached mass will start to oscillate. Rank in order, from highest to lowest, the maximum speeds of the masses.



STOP TO THINK 14.3

The four springs shown here have been compressed from their equilibrium position at x = 0 cm. When released, the attached mass will start to oscillate. Rank in order, from highest to lowest, the maximum speeds of the masses.



$$x(t) = A\cos(\omega_o t + \phi)$$

$$\omega_o = \sqrt{k/m}$$

$$E = T + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

$$c > b > a = d$$

 $\mathbf{c} > \mathbf{b} > \mathbf{a} = \mathbf{d}$. Energy conservation $\frac{1}{2}kA^2 = \frac{1}{2}m(v_{\text{max}})^2$ gives $v_{\text{max}} = \sqrt{k/m} A$. k or m has to be increased or decreased by a factor of 4 to have the same effect as increasing or decreasing A by a factor of 2.

Example 12-1 Finding the Phase

Sound causes a frog's eardrum to move back and forth as shown in the plot of displacement versus time in Figure 12-7. In this case, displacement is given as a percentage of the amplitude of the oscillations. At the start of the measurements, the displacement is about 12% of the maximum in the negative direction. Find the phase angle ϕ if the displacement obeys $x(t) = A \cos(\omega_0 t + \phi)$ (Equation 12-4). (We will address the fact that the amplitude of the oscillations changes from one cycle to the next in Section 12-7.)

Note: This example would be better placed in sec.12.8 (as it is both a *forced* and *damped* oscillator situation)

Displacement from equilibrium of a frog's eardrum

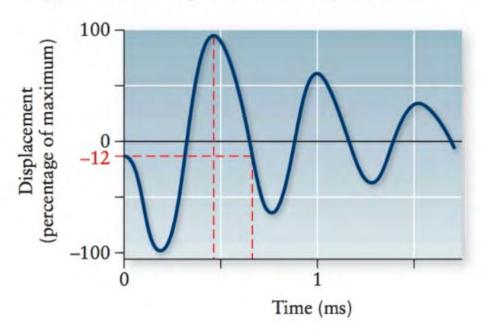


Figure 12-7 Sound causes a frog's eardrum to move back and forth, in (approximately) harmonic motion. The vertical dashed red line marks the beginning of a cosine cycle; the horizontal dashed red line marks -12% of the maximum displacement from equilibrium. The time interval between the two red arrows is just slightly more than one-quarter of a full cycle. (After Chung, Pettigrew, and Anson, (1981) Proc. Royal Soc. London Ser. B Biol. Sci. 212, No. 1189, pp. 459-485.)