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Announcements & Key Concepts (re Today)

= Online HW #8 (re fluids): Posted and due TODAY (11/22)

— Final exam: Saturday, Dec. 14 (start preparing!)

Some relevant underlying concepts of the day...

> Harmonic oscillator

> Frog ears

> Resonance

> Damped situation

> Complex #s(!?!)



Harmonic oscillator

“mass-on-a-spring”

> One of the most fundamental/canonical problems in physics



Knight



Harmonic oscillator: Energy

Knight



Ex. "Frog's eardrum"

Note: This example
would be better placed
in sec.12.8 (as it is both
a forced and damped
oscillator situation)

Kesten & Tauck






Methods = Scanning Laser Doppler Vibrometry (sLDV)



- Magnitude phase,
and frequency (the
three key proerties of
sinusoidal motion!)

However, there is more
than meets the eye
here...



Phase accumulates across space.... - A traveling wave!



Ex. "Frog's eardrum" Female, 1.25 kHz

Female, 1.2 kHz

Male, 1.5 kHz

- We will come back to waves soon....



Harmonic oscillator: Driven case (no damping)

k

r+ —x = F,coswt Sinusoidal driving force at
m frequency w

Assumption: Ignore onset behavior and that system oscillates at frequency @

az(t) — B cos (wt + a) Assumed form of solution

—mw?B coswt + kB coswt = F, cos wt

(1) = Fo/m

— cos (wt + «
w2 — w? (Wt + )




Harmonic oscillator: Driven case (no damping)

Two Important Concepts Demonstrated Here:

- Resonance when system is driven at natural frequency

- Phase shift of 1/2 cycle about resonant frequency



Recall: Fact Check

Baseball pitcher
w/ 105 mph
fastball = 14
giraffes(!!)

= (46.9)2/(2*9.8) =112.2 m
= 112.2 m~ 22.4 giraffes

22.4 giraffes > 14 giraffes, so what gives?

—> Air resistance? “Aerodynamics”?

Munroe (2014)



Review: Drag

Knight (2013)



Harmonic oscillator

“mass-on-a-spring”

> Let us now factor damping in as well (as any "real" system must have!)

> Will assume damping is proportional to velocity



Harmonic oscillator: Undriven case (w/ damping)

> Will assume damping is proportional to velocity

me —|— biB _|_ kw — O Purely sinusoidal solution

no longer works!
.’,i' -+ ")/.’13 —+ wg.fl? — 0 Change variables

Assumption: Form of solution is a
complex exponential




Recall (re exponentials as solutions)

Exponential growth/decay

Newton'’s law of heating/cooling

dP

= —kP

dt

Solution

P = Pyef

e.g., Nuclear decay, 1%t order chemical
reaction, bacterial growth

“Newton proposed that the temperature of a hot object decreases at a rate proportional to
the difference between its temperature and that of its surroundings. Similarly, a cold object
heats up at a rate proportional to the temperature difference between the object and its

surroundings.”

drl

T,-T
o = ol )

Solution

T(t) =Ty + Ce

temperature Note: Very natural place to think
about ‘equilibrium points’ and their
Initial 1 Stabi“tyq P
temperature
peratre —__|
"™
S

i

<— Room temperature

time

Hughes-Hallett et al. (2005)



Recall (re exponentials as solutions)

Problem 1. A first-order, linear differential equation with constant coefficients and a constant
inhomogeneous (drive or input) term has an exponential solution. Therefore, the solution can be
written in the form

n(t) = Neo + (no — noo) e T

where nq = n(0) is the initial value of n(t) and n,, = lim;_,, n(t) is the final value of n(t). The
form of this solution can be verified by evaluating n(¢) at ¢ = 0 and ¢t — oo. Substitution into the
differential equation shows that this solution satisfies the differential equation. The solutions for
cases i-vi are shown in Figure 1. The solutions for part a (i and i1) have the same initial and final
values but different time constants (by ¢ = 10 s, curve ii is just above 6 and has not yet reached
its final value of 10). The solutions for part b (iii and iv) have the same initial values and different
final values. Although curve iv was calculated with the same time constant as in iii, it doesn’t make
sense to compare the time constants of the curves, since curve iv isn’t changing. The solutions for
part ¢ (v and vi) have different initial and final values and the same time constants.



Harmonic oscillator: Undriven case (w/ damping)

> Will assume damping is proportional to velocity

maj‘ —|— baj _|_ le — O Purely sinusoidal solution

no longer works!

.’,i' -+ /Y.’L' —+ wg.’l? — 0 Change variables
Assumption: Form of solution is a . i(wt—l-(S)
complex exponential $(t) T A@



OM, THATS A TRIQY ONE..

YOU HAYE TO USE CALQULUS
AND [MAGINARY NUMBERS

R THIS.

WonDID YOV |

INSTINCT,

HERE'S ANOTHER MATH

k?‘ZDBLEM 1 QAT FIGURE

QUT.

WHATS

YOU KNON,

|MAQINARY

ELEVENTEEN, | | LEARN ALL | TIGERS ARE

THIRTY-TWEIVE] [ THIS? YOUVE | BORNWITHIT,

NUMBERS 7/







Trigonometry Review: Complex #s

Euler’s Formula

a4 ib = Ae'?

= A(cosf + isin )

Cartesian Form Polar Form
a = Acos(0) A=+/a%+ b2

At b
b= Asin (0) 0 =tan"! (—)

a

— Complex solution contain both magnitude and phase information



Knight



Harmonic oscillator: Undriven case (w/ damping)

T+ yx + wgaj = 0 x(t) = Aet(wt+9)
$(t) _ Ae—fyt/2 6’i(wt—|—a) W= w? - ’VZQ

(slightly lower frequency of

. . . A - oscillation due to damping)
[A and « are constants of integration, depending upon initial conditions]

—> Damping causes
energy loss from system

Note: Sometimes the “time
constant” is denoted t (=1/y)



ZC(t) :Ae—fyt/Q 6i(wt—|—a)

Caution! Here 1=1/y

Knight



Ex. (SOL)

CIZ(t) :Ae—'yt/2 6i(wt—|—a)

Caution! Here 1=1/y

Note: For further study, where in the world did the # “37%"” come from?!? [Hint: e1]

Knight



Harmonic oscillator: Driven case (w/ damping)

ko
iyt +wir = "e
m

wt

Sinusoidal driving force at

frequency @

Assumption: Ignore onset behavior and that system oscillates at frequency @

x(t) = Ae~Hwtt9)

Assumed form of solution

F,/m

Alw) =

(3 —w?

0(w) = arctan

? + (w72

Yw
2 _ 2
W — W3

(magnitude)

(phase)



Harmonic oscillator: Driven case (w/ damping)

F,/m
(P2 + (]

Alw) =

w2 — w2

(5(w):arctan( R )

Resonance

— Second-order oscillator
behaves as a “band-pass filter”



Resonance - Examples

“Tonotopy” of the inner ear

1\

http://physics.stackexchange.com/questions/159728/forced-oscillations-resonance

MRI

Slightly different type of “resonance”...



