26. I A particle’s position on the x-axis is given by the functiop
x = (t* — 4t + 2) m, where ¢ is in s.

a.

g
£

Make a position-versus-time graph for the interval 0s <
t = 5 s. Do this by calculating and plotting x every 0.5 s from
0's to 5 s, then drawing a smooth curve through the points.
Determine the particle’s velocity at ¢ = 1.0 s by drawing the
tangent line on your graph and measuring its slope.
Determine the particle’s velocity at ¢ = 1.0 s by evaluating
the derivative at that instant. Compare this to your result from
part b.

Are there any turning points in the particle’s motion? If so, at
what position or positions?

Where is the particle when v, = 4.0 m/s?

Draw a motion diagram for the particle.

27. 1| Three particles move along the x-axis, each starting with

Vox

= 10 m/s at t, = 0's. In FIGURE P2.27, the graph for A is a

position-versus-time graph; the graph for B is a velocity-versus-
time graph; the graph for C is an acceleration-versus-time graph.
Find each particle’s velocity at ¢ = 7.0 s. Work with the geom-
etry of the graphs, not with kinematic equations.
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34. | A particle’s acceleration is described by the function
a, = (10 — ) m/s?, where ¢ is in s. Its initial conditions are
xo=0mand vy, =0m/satz=0s.

a. At what time is the velocity again zero?
b. What is the particle’s position at that time?

35. || A ball rolls along the frictionless track shown in FIGURE P2.35,
Each segment of the track is straight, and the ball passes smoothly
from one segment to the next without changing speed or leaving
the track. Draw three vertically stacked graphs showing position,
velocity, and acceleration versus time. Each graph should have
the same time axis, and the proportions of the graph should be
qualitatively correct. Assume that the ball has enough speed to

reach the top. g =

FIGURE P2.35 FIGURE P2.36



36. || Draw position, velocity, and acceleration graphs for the ball
shown in FIGURE P2.36. See Problem 35 for more information.

37. | Draw position, velocity, and acceleration graphs for the ball
shown in FIGURE P2.37. See Problem 35 for more information.
The ball changes direction but not speed as it bounces from the

reflecting wall.

Reflecting
Vs = 0 wall ™

FIGURE P2.37

38. || FIGURE P2.38 shows a set of kinematic graphs for a ball rolling
on a track. All segments of the track are straight lines, but some
may be tilted. Draw a picture of the track and also indicate the
ball’s 1nitial condition.
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FIGURE P2.38 FIGURE P2.39



15. Here’s a more serious, practical math/physics question for you to ponder.
If you are making a round-trip flight from A to B and then back to A, does a
steady wind blowing from A to B increase, decrease, or leave unchanged, the
total travel time compared with when no wind is blowing? Don’t guess—make a

mathematical analysis (it’s just high school algebra). You can find the answer
at the end of Chapter 1.
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2.26. Solve: (a)

T T £(s)
4

(b) To be completed by student.
(c) %=er =2t-4=v (att=1s)=[2 m/sz(l s)—4 m/s]=-2 m/s

(d) There is a turning point at ¢ =2 s. At that time x=-2 m.
(e) Using the equation in part (c),
v, =4m/s=2t-4) m/s=>t=4

Since x=(t2—4t+2) m,x=2m.

()
- - —p 4@ t——@
Turn y i v
ll a —
around at ! o
t=20s “._ - > >

2.27. Solve: The graph for particle A is a straight line from t=2s to t=8s. The slope of this line is —10 m/s,
which is the velocity at #=7.0 s. The negative sign indicates motion toward lower values on the x-axis. The velocity
of particle B at #=7.0 s can be read directly from its graph. It is —20 m/s. The velocity of particle C can be obtained

from the equation
ve =v; + area under the acceleration curve between ¢ and #;

This area can be calculated by adding up three sections. The area between r=0s and ¢=2s is 40 m/s, the area
between t=2s and t=5s is 45 m/s, and the area between t=5s and t=7s is —20 m/s. We get (10 m/s)+

(40 m/s) + (45 m/s) — (20 m/s) = 75 m/s.

2.28. Visualize:
a, (m/s2)

v(2 s) = area

© Copyright 2013 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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y T t(s)
0 5

2.33. Solve: The position is the integral of the velocity.
1
X =X+ J'Zlvxdt =xy+ J'(;lktzdz =xo+1kt’ 01 =xo+1kt}
0
We’re given that x, =—9.0 m and that the particle is at x; =9.0 m at # =3.0 s. Thus
9.0 m=(-9.0 m)+1k(3.05)* =(-9.0 m) + k(9.0 5*)
Solving for k gives k=2.0 m/s’.
2.34. Solve: (a) The velocity is the integral of the acceleration.
_ 1 _ ] _ _ 1,2 | _ 12
e =vo, + [ ladt =0 mis+ [ 110 f)dt = (100~ L1 )|0 —104 - 14
The velocity is zero when
ve =0 mis =(104 -4 ) = (1014 )x1
=#=0s or £=20s
The first solution is the initial condition. Thus the particle’s velocity is again 0 m/s at # =20 s.
(b) Position is the integral of the velocity. At #; =20 s, and using x, =0 m at 7, =0 s, the position is

B noo 20 Loy a0 g 520
xl—x0+L0det—0 m+‘[0 (100 =1¢%)dr =5t |O ~ 1y |0 =667 m

2.35. Model: Represent the ball as a particle.
Visualize: Please refer to Figure P2.35.
Solve: In the first and third segments the acceleration a, is zero. In the second segment the acceleration is negative and

constant. This means the velocity v, will be constant in the first two segments and will decrease linearly in the third

segment. Because the velocity is constant in the first and third segments, the position s will increase linearly. In the second
segment, the position will increase parabolically rather than linearly because the velocity decreases linearly with time.

| //

0 t
VS

0 1
a.)'

0 t
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2.36. Model: Represent the ball as a particle.

Visualize: Please refer to Figure P2.36. The ball rolls down the first short track, then up the second short track, and
then down the long track. s is the distance along the track measured from the left end (where s = 0). Label # = 0 at the
beginning, that is, when the ball starts to roll down the first short track.

Solve: Because the incline angle is the same, the magnitude of the acceleration is the same on all of the tracks.

N

0 1 i(s)
v.Y

0 f : i(s)
a

0 : 1(s)

Assess: Note that the derivative of the s versus ¢ graph yields the v, versus ¢ graph. And the derivative of the v

versus ¢ graph gives rise to the a, versus ¢ graph.

2.37. Model: Represent the ball as a particle.

Visualize: The ball moves to the right along the first track until it strikes the wall, which causes it to move to the
left on a second track. The ball then descends on a third track until it reaches the fourth track, which is horizontal.
Solve:

(=]
A
~
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Assess: Note that the time derivative of the position graph yields the velocity graph, and the derivative of the
velocity graph gives the acceleration graph.

2.38. Visualize: Please refer to Figure P2.38.
Solve:

Steeper than
first part

2.39. Visualize: Please refer to Figure P2.39.

\

Solve:

s=0
Ball rolls off left edge

2.40. Model: The plane is a particle and the constant-acceleration kinematic equations hold.
Solve: (a) To convert 80 m/s to mph, we calculate 80 m/s X 1 mi/1609 m x 3600 s/h =179 mph.
(b) Using a, = Av/At, we have,
4 (t=01t0t=105)=2VSZOMS 53102 4 (t=20st01=305)= D WSTAOMS_, 500
10s—-0s 30s-20s
For all time intervals a is 2.3 m/s>.
(¢) Using kinematics as follows:
Ve =Vig Halty — 1) =80 m/s =0 m/s + (2.3 m/sz)(tf —0s)=>1t=35s
(d) Using the above values, we calculate the takeoff distance as follows:

S = 85 +vi (4 —ti)+%as(tf —£)*> =0m+(0 m/s)(35 s)+%(2.3 m/s*)(35 5)> =1410 m

For safety, the runway should be 3x1410 m=4230 m or 2.6 mi. This is longer than the 2.4 mi long runway, so the
takeoff is not safe.

2.41. Model: Represent the car as a particle.
Solve: (a) First, we will convert units:

miles>< 1hour 1610 m
hour 3600s 1mile

=27 m/s

The motion is constant acceleration, so

vi—vg (27 m/s—-0m/s)
At 10s -

(b) The fraction is a/g =2.7/9.8=0.28. So a is 28% of g.

(c) The distance is calculated as follows:

2.7 m/s?

v =VytaAt=a=

X =X +v0At+%a(At)2 =%a(At)2 =13x10> m=43x10? feet

2.42. Model: Represent the spaceship as a particle.
Solve: (a) The known information is: xy =0 m, vy =0 m/s, #, =0s,a=g =98 m/s?, and v = 3.0x10® m/s. Constant

acceleration kinematics gives
i~V

v =vp+aAt = At =t, = =3.06x10s

a
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Solution to the Preface Problem in Endnote 15

Let d be the distance between A and B, s the speed of the airplape o
still air, and w the speed of the wind. Then, the total round-trip trave]
time T is the sum of the times spent traveling with, and then against
the wind:

d d d(s —w)+d (s +w)
— -+ —
S+w  s—w (s+w)(s —w)

T AsE Y 2sd 2 1
P i R) a4 L~ B0

When there is no wind (w =0) then T = QS—d, and when w > 0 the
denominator in the brackets gets smaller, and we have T > Zsi. So, a
steady wind always increases the total travel time.

Here’s a math-free way to see by inspection the special case of w =s5.
In that case the return part of the trip has the plane, with speed s,

facing a headwind of the same speed. Thus, the plane doesn’t move and
so will never get back to A (thatis, T = oo if w =).

T




