Problem 1 SOL

(@) « and ¢ are given; we wish to find 6.
Hence, we use Eq. 11-5,

0 = wot + Lat?.

At t =0, we have w = wo = 0 and a = 3.0
radians/sec2. Therefore, after 2.0 sec,

6 = (0)(2.0 sec) + 1 (3.0 radians/sec?)

(2.0 sec)? = 6.0 radians = 0.96 rev. Fig. 11-5 Example 1. The line
OP is attached to a grindstone ro-

tating as shown about an axis
through O that is fixed in the
reference frame of the observer.

(b) « and ¢ are given; we wish to find w.
Hence we use Eq. 11-3

w = wo + at,
and

w = 0 + (3.0 radians/sec?)
(2.0 sec) = 6.0 radians/sec.

as a check, we have
w? = we? + 2a4,
w? = 0 4 (2)(3.0 radians/sec?) (6.0 radians) = 36 radians?/sec?,

w = 6.0 radians/sec.



Problem 2 SOL

We have a = 3.0 radians/sec?, w = 6.0 radians/sec after 2.0 sec, and r = 0.50
meter. Then,

(a) v = wr

= (6.0 radians/sec) (0.50 meter)

= 3.0 meter/sec (linear speed);
(b) ar = ar

= (3.0 radians/sec?)(0.50 meter)

= 1.5 meters/sec? (tangential acceleration);
(c) ar = V2/r = w’r

= (6.0 radians/sec)?(0.50 meter)

= 18 meters/sec? (centripetal acceleration).

(d) Are the results the same for a particle halfway in from the rim, that is, at

r = 0.25 meter?
The angular variables are the same for this point as for a point on the rim.

That is, once again

a = 3.0 radians/sec?, w = 6.0 radians/sec.

But now r = 0.25 meter, so that for this particle

» = 1.5 meters/sec,  ar = 0.75 meter/sec’,  ar = 9.0 meters/sec’. <



Problem 3 SOL

o The ?ISk s subject to two angular velocities simultaneously; we can describe

S resu tant .motlon by the vector sum of these vectors. The angular velocity ®1

:is(;)c;ated W.lth the- shaft rotation has a magnitude of 100 radians/sec and occurs

. h;izii ;:ils 1tha’o 1s not, ﬁx.ed but, as seen by an observer in the room, rotates in

turntable ; plane at 30 radians/sec. The angular velocity w» associated with the
able is fixed vertically and has a magnitude of 30 radians/sec.

The resultant angul ; . :
gular velocity of th
The magnitude of & is y e disk ® is the vector sum of w; and ..

w= w12 4+ w2 = V{ (100 radians/sec)? + (30.0 radians/sec)?

= 104 radians/sec.

The direction of @ is not fixed in our observer’s reference frame but rotates at the
same angulal: rate as th_e turntable. The vector @ does not lie in the horizontal
plane but points above it by an angle 6 (see Fig. 11-8b), where

0 = tan™! ws/w; = tan™! (30.6 radians/sec) /(100 radians/sec)
= tan—! 0.300 = 16.7°

We can describe the motion of the disk as a simple rotation about this new axis
(whose direction in our observer’s reference frame is changing with time as described
above) at an angular rate of 104 radians/sec. How would the situation change if
the direction of rotation of the disk, or of the turntable, were changed? <



Problem 4 SOL

‘The torque about the central axis is = TR, and the rotational inertia of the
disk about its central axis is I = 1MR2. From

T = Iq,
we have
TR = GMR?aq,
or
MR P

mg 7

Fig. 12-12 Example 4. A steady
downward force T produces rotation
of the disk. Example 5. Here T is
supplied by the falling mass m.



Problem 5 SOL

Now, let T be the tension in the cord.
Since the suspended body will accelerate
downward, the magnitude of the down-
ward pull of gravity on it, mg, must
exceed the magnitude of the upward pull
of the cord on it, T. The acceleration
a of the suspended body is the same
as the tangential acceleration of a point
on the rim of the disk. From Newton’s
second law
mg — T = ma.
The resultant torque on the disk is TR and its rotational inertia is $MR?, so that
from
T = Ia
we obtain
TR = MR’

Using the relation a = Ra, we can write this last equation as
2T = Ma.

Solving the first and last equations simultaneously leads to
-l
*=\u+2m)?

Mm
T= (M+2m) o

and




Problem 6 SOL

We'll use the torque equilibrium equa-
tion 3775 = 0, where we calculate the

torques relative to the edge of the ship, the point around which the
plank will pivot. There are two torques involved: the torque produced
by the plank’s weight and the torque produced by the person’s weight.
The plank’s weight acts in its centre of mass, which is located 2[m]
from the edge of the ship. The torque produced by the weight of the
plank is therefore given by 75 = 120g x 2 = 240g[N m]. The torque
produced by the person when he reaches a distance of z[m] from the

edge of the ship is 7; = —100gz[N m|. Thus, the maximum distance

the person can walk before the plank tips is z = %ng = 2.4|m].



Problem 7 SOL

Model: We assume the spring to be ideal and to obey Hooke’s law. We also treat the block (B) and the ball
(b) as particles. In the case of an elastic collision, both the momentum and kinetic energy equations apply. On the
other hand, for a perfectly inelastic collision only the equation of momentum conservation is valid.
Visualize:

(a) my=20g Y mg=100g
(v)p=0m/s
(v = 5.0 m/s Before
o—

X

(b)

vy
Elastic collision <=@
x
After

Inelastic collision

Place the origin of the coordinate system on the block that is attached to one end of the spring. The before-and-after
pictorial representations of the elastic and perfectly inelastic collision are shown in figures (a) and (b), respectively.
Solve: (a) For an elastic collision, the ball’s rebound velocity is

)y = =B (), = 508 5 0 /) =—3.33 s
my, +mg 120 g
The ball’s speed is 3.3 m/s.
(b) An elastic collision gives the block speed

2mg

)5 =08 (50 m/s) =1.667 ms

) =
e my, +mp 120 g

To find the maximum compression of the spring, we use the conservation equation of mechanical energy for the
block + spring system. That is K; + Uy = K +Usy:

1 , 1 1 1
50+ k(= x0) =m0+ k(¥ =%0)”  0+k(x —%0)” =mp(vp)p +0

(q—-x)= \/(0.100 kg)(1.667 n1/s)2/(20 N/m) =11.8 cm

(¢) Momentum conservation pg = p; for the perfectly inelastic collision means
(mp +mp)ve = myp () +mp (V)p
(0.100 kg +0.020 kg)v = (0.020 kg)(5.0 m/s) +0 m/v = v; =0.833 m/s
The maximum compression in this case can now be obtained using the conservation of energy equation
K, +Ug =Ky +Ugg:
0 J+(1/2)k(Ax)? = (1/2)(mg + my )v;2 +0

. Axz MBE M ve = \/0'120 K8 0.833 m/s) = 0.0645 m = 6.5 om
V& 20 N/'m



Problem 8 SOL

¢|<

w, = 200
moDEL The friction between the two objects creates torques that Before: ] ’ .
speed up the loop and slow down the disk. But these torques are 20em 4L .
internal to the combined disk + loop system, so 7., = 0 and the
total angular momentum of the disk + loop system is conserved. M, = 1.0kg

—F

VISUALIZE FIGURE 12.58 is a before-and-after pictorial representa-
tion. Initially only the disk is rotating, at angular velocity ;. The rota-
tion is about an axis of symmetry, so the angular momentum L=13
is parallel to . At the end of the problem, By, = Byoep = @s.

My, =20kg

SOLVE Both angular momentum vectors point along the rotation Symmetry axis

axis. Conservation of angular momentum tells us that the magni-

tude of L is unchanged. Thus € 150
After: | .
Li = Ligws + loopws = L; = Iy, f

Solving for wy gives

I disk

wf b——ri ——w.

The moments of inertia for a disk and a loop can be found in
Table 12.2, leading to

1 2
2 MdiskR
Ws =

%AldiskR2 + 1‘4loopR2

w; = 100 rpm

ASSEss What appeared to be a difficult problem turns out to be
falrly €asy once you recognize that the total angular momentum
1S conserved.



Problem 9 SOL

Model: Model the arm as a uniform rigid rod. Its mass acts at the center of mass.
Visualize:

LA AN
(Fgh

(@) (b)

Solve: (a) The torque is due both to the gravitational force on the ball and the gravitational force on the arm:

T=Tpo + Torm = (M, €)1, SIN90° + (m, g)r, sin 90°
= (3.0 kg)(9.8 m/s%)(0.70 m)+(4.0 kg)(9.8 m/s?)(0.35 m)=34 Nm

(b) The torque is reduced because the moment arms are reduced. Both forces act at ¢ = 45° from the radial line, so
T = Ty + Tarm = (Mp )7, SIN45° + (m, g)r, Sin45°

= (3.0 kg)(9.8 m/s%)(0.70 m)(0.707) + (4.0 kg)(9.8 m/s)(0.35 m)(0.707) =24 Nm



Problem 10 SOL

Model: Model the turntable as a rigid disk rotating on frictionless bearings. As the blocks fall from above
and stick on the turntable, the turntable slows down due to increased rotational inertia of the (turntable + blocks)
system. Any torques between the turntable and the blocks are internal to the system, so angular momentum of the
system is conserved.

Visualize: The initial moment of inertia is /; and the final moment of inertia is /5.

Solve: The initial moment of inertia is /; = I5gq =mR* =1(2.0 kg)(0.10 m)* =0.010 kg m” and the final moment
of inertia is
I, =1, +2mR* = 0.010 kg m* +2(0.500 kg) x (0.10 m)* =0.010 kg m? +0.010 kg m* =0.020 kg m?
Let @ and @, be the initial and final angular velocities. Then
Ly _ (0.010 kg m?)(100 rpm)
I,  0.020 kg m?

Ly=Li = o, =0, = 0, = =50 rpm



Extra Credit SOL

Solve: The bricks are stable when the net gravitational torque on each individual brick or combination of
bricks is zero. This is true as long as the center of gravity of each individual brick and any combination is over a base
of support. To determine the relative positions of the bricks, work from the top down. The top brick can extend past
the second brick by L/2. For maximum extension, their combined center of gravity will be at the edge of the third
brick, and the combined center of gravity of the three upper bricks will be at the edge of the fourth brick. The
combined center of gravity of all four bricks will be over the edge of the table.

Measuring from the left edge of brick 2, the center of gravity of the top two bricks is

L
m| — |+mL
_mx;tmyx, (2) 3

X = ==L
(%12)eom my +m, 2m 4

Thus the top two bricks can extend L/4 past the edge of the third brick. The top three bricks have a center of mass

&) )(3)
m1x1+m2x2 +m3X3: 2 4 4 IEL

m +m, +my 3m 6

(x123 )com -

Thus the top three bricks can extend past the edge of the fourth brick by L/6. Finally, the four bricks have a combined

center of mass at
L 4L 11L 17L
m|— |+m| — |+m| — [+ m| ——
(2) (6) (lzJ (lz)zzL

4m 8
The center of gravity of all four bricks combined is 7L/8 from the left edge of the bottom brick, so brick 4 can
extend L/8 past the table edge. Thus the maximum distance to the right edge of the top brick from the table edge is
d - £ + £ + £ + £ - é
8 6 4 2 24

Thus, yes, it is possible that no part of the top brick is directly over the table because d,,, > L.

(*1234)com =

Assess: As crazy as this seems, the center of gravity of all four bricks is stably supported, so the net gravitational
torque is zero, and the bricks do not fall over.



