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Problem 1 (SOL)

Problem 1. A first-order, linear differential equation with constant coefficients and a constant
inhomogeneous (drive or input) term has an exponential solution. Therefore, the solution can be
written in the form

n(t) = Neo + (no — noo) e T

where nq = n(0) is the initial value of n(t) and n,, = lim;_,, n(t) is the final value of n(t). The
form of this solution can be verified by evaluating n(¢) at ¢ = 0 and ¢t — oo. Substitution into the
differential equation shows that this solution satisfies the differential equation. The solutions for
cases i-vi are shown in Figure 1. The solutions for part a (i and i1) have the same initial and final
values but different time constants (by ¢ = 10 s, curve ii is just above 6 and has not yet reached
its final value of 10). The solutions for part b (iii and iv) have the same initial values and different
final values. Although curve iv was calculated with the same time constant as in iii, it doesn’t make
sense to compare the time constants of the curves, since curve iv isn’t changing. The solutions for
part ¢ (v and vi) have different initial and final values and the same time constants.

Note: The solution is essentially the

same too, just written in a more T(t) — TO _I_ Cfe—()zt

general way



Problem 1 (SOL cont)
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Figure 1. Solutions to parts i-vi. In the upper panel, horizontal dotted lines are shown at the final value of 10 and for the value of
n(t) att = 7,i.e., the lineis at 10(1 — e ).



Problem 2 (SOL)

Part a)

1
Ay = vyt + antz

antz + vyt —Ay=0

1
= 2 e e =
Yo,y = \/ ve,y 4 (zay)( A)  _ysin(30°) £ Vidsin(30°) + 2a,(Ay)
= =

1 a
2(32) y
—(35.3?) sin(30°) + \/ (35.3?) sin?(30°) + 2(—9.8852)(—255 m)

m
—2Bl—
52

_ —17.65 * 72.87
—9.81

S

Taking the negative root, [t = 9.24 s |.
Part b)

vi~ v = 2a,(Ay)

2
, 1T dz (35.3?) sin?(30°)

v — Uy

2 — 4
o 2(—9.8?2)

The ball’s maximum height is 16 m above its initial position, or 255 m + 16 m = |271 m .

Ay = =16 m

Part ¢)

Ax =y = (35.3?) cos(30°)(9.24 s) = [282.5 m




Problem 3 (SOL)

SET UP

Two cars, initially separated by 24 m, are traveling in a straight line. The blue car, which

is in the lead, is traveling at a speed of 28 m/s, while the red car is traveling at a speed of

34 m/s. We can calculate the time it takes for the red car to catch up with the blue car by
realizing the red car is traveling at a speed of 6 m/s relative to the blue car. The time is equal
to the separation distance divided by this relative speed. Once we calculate this time, we can
multiply it by the red car’s actual speed of 34 m/s to determine the distance it covered. If the
red car accelerated from an initial relative speed of 6 m/s at a rate of a = (4/3) m/s* instead,
we can calculate the time it would take the car to cover a distance of 24 m using the constant
acceleration equations.

SOLVE
Part a)
24
6_
S
Part b)
Ax/ = (4 s)<34%) =[136 m
Part ¢)

1
Ax = vyt + ia,‘t2

1
Eﬂxtz Al UO,xt —Ax=0

1
ot 2 _ — ™
i\/ 4(2“")( M)y = Vb, + 24,(A%)

Taking the positive root, t = 3 s.

REFLECT
Because the car is accelerating in part (c), it makes sense that the time should be less than in
part (a). We can double-check our answers by calculating the distance the blue car travels in

4 s: Axy,. = (4 s)(ZS?) = 112 m. The blue car travels 24 m less than the red car, which is

exactly the original distance separating them.



Problem 4 (SOL)

11. A naval destroyer is testing five clocks.

Exactly at noon, as determined by the

WWYV time signal, on the successive days of a week the clocks read as follows:

Clock

B
C
D
E

Sun.

12:36:40
11:59:59
15:50:45
12:03:59
12:03:59

Mon.

12:36:56
12:00:02
15:51:43
12:02:52
12:02:49

Tues.

12:37:12
11:59:57
15:52:41
12:01:45
12:01:54

Wed.

12:37:27
12:00:07
15:53:39
12:00:38
12:01:52

Thurs.

12:37:44
12:00:02
15:54:37
11:59:31
12:01:32

Fri.

12:37:59
11:59:56
15:55:38
11:58:24
12:01:22

Sat.

12:38:14
12:00:03
15:56:33
11:57:17
12:01:12

How would you arrange these five clocks in the order of their relative value as good
timekeepers? Justify your choice.

Best to worse: C, D, A, B, E
(main criteria is consistency, followed by the size of the daily variation)



Problem 5 (SOL)

Example 5. Calculate the speed of an artificial earth satellite, assuming that
it is traveling at an altitude & of 140 miles above the surface of the earth where
g = 30 ft/sec2. The radius of the earth R is 3960 miles.

Like any free object near the earth’s surface the satellite has an acceleration g
toward the earth’s center. It is this acceleration that causes it to follow the

circular path. Hence the centripetal acceleration is g, and from Eq. 4-9, a =
v%/r, we have

g = v2/(R + h),

or

v = ‘\/(R + h)g = vV (3960 miles + 140 miles) (5280 ft/mile) (30 ft/sec?)
= 2.55 X 10* ft/sec = 17,400 miles/hr. <



Problem 6 (SOL)

Given the two vectors A=2i+j—k, B=1i-j+ 2k, find A X B.

Find a unit vector normal to the plane containing the two vectors A and B above.

i j k
AxB=[2 1 -1|=i@2-1)+j(-1-4)+k(-2-1)
1 -1 2
=i-5j-3k
o= AXB _ i-5j-3k
|AxB] [12+52%+3%]/2

i 5 3k




Problem 7 (SOL)

Given the three vectors A=i,B=i-j,and C =k, find A . (B x C).

Find A x (B x C) above.
1 0 O
A-BxC)=|1 -1 0|=1(~1+0)=-1
0 0 1

Ax(BxC)=B(A.C)- CA-B)=(i-j0-k(1-0)=-k



Problem 8 (SOL)

The observer must be on the equator of the earth. The orbit of the
space station is a large circle in the equatorial plane with center at the
center of the earth. The radius of the orbit can be figured out using the

orbiting period of 24 hours* as follows. Let the radius of the orbit be R
and that of the earth be Rp.

* .
For a more accurate calculation,

the orbiting period should b
56 minutes and 4 seconds. e taken as 23 hours

h
iy g mv?  GMm

R R’
where v is the speed of the space station, G is the universal constant of

gravitation, m and M are the masses of the space station and the earth
respectively, giving

2 GM
=bept |
i GMm
mg = R% )
we have
GM = R3g .
Hence a
A Sl
R
For circular motion with constant speed v, the orbiting period is
T = 2R
v
Hence A R R @
T2 R
and




Problem 9 (SOL)

10. The speed of —ﬁlling (i.e. the amount of liquid which falls
into the bucket during unit time) will not change, for although
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F1c. 157

the area of the cross-section of rain falling into the bucket de-
creases (§; = S cos «, Fig. 157a), the velocity of the drops not
only changes direction but also increases in magnitude (" =
vfcos o, Fig. 157b). In other words, the speed at which the

bucket fills up depends only on the vertical velocity of the drops,
which is not altered by the wind. '



Bonus (SOL)

Let us consider the
forces acting on the load m
and on the wedge M (Fig. |
166). The load m is subject Mg
to: (1) its weight mg and Fio. 166
(2) the reaction of the
wedge N. The wedge is subject to (1) its own weight Mg, (2)
the pressure exerted by the load N’ and (3) the reaction of the
plane, R. As a result of the horizontal component of the pressure
exerted by the load, the wedge moves to the left relative to the
plane with a horizontal acceleration a;, which can be found from
the equation

Ma, = N’ sin «. (1)
In the vertical direction the wedge has no acceleration, therefore
Mg—R 4+ N' cosa =0 (2)



Bonus (SOL cont)

Let us call the horizontal component of the load’s acceleration
relative to the wedge a,, and the vertical component a;. Then the
horizontal component of the load’s acceleration relative to the
plane will be a,—a;, and the vertical component will be a,. These
accelerations may be found from the equations

m(ay—a;) = N sina (3)
and

mag = mg—JN cos « , (4)
Plainly ' = N and

as = a,tana. (5)

From equations (4), (5), (3) and (1) we find that the pressure of
the load on the wedge is

mMg cos «
N

— M -+ msin? g (6)

Now from equation (2) we can find the pressure of the wedge on
the plane

Mg(l + m cos? )
~ M+ msin?a
Further from (1) and (6) we find the wedge’s acceleration

mg Cos o Sin o 7)
T M+ msin?q

a



Bonus (SOL cont)

From (3), (6) and (7) we find the horizontal component of the
load’s acceleration relative to the wedge

(M 4 m) g cosa sin «
B A )
-+ m sin“a
and the horizontal component of the load’s acceleration relative
to the plane

az'::

Mg cos o sin o
M + msin®q
From (8) and (5) we find that the vertical component of the
acceleration of the load relative to the plane
e (M + m) g sin? o
M 4 msin2 g

Ao—0y =




