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Problem 1

Given the time-varying vector
A=iat+jpt’ +kyt’

wzhere 20!, B, and ¥ are constants, find the first and second time derivatives dA/dt and
d°A/dt".



Problem 2

A small ball is fastened to a long rubber band and twirled around in such a way that the ball
moves in an elliptical path given by the equation

r(t) = ib cos wt + j2b sin wt

where b and ware constants. Find the speed of the ball as a function of . In particular, find
v at?=0and at t = 7/2w, at which times the ball is, respectively, at its minimum and max-
imum distances from the origin.



Problem 3

A particle of massm is released from rest a distance b from a fixed origin of force that attracts
the particle according to the inverse square law:

Fx)=—kx™
Show that the time required for the particle to reach the origin is

mb® V2
()

Hint: Treat this as a 1-D problem. Then just integrate. And integrate. And integrate some more!



Problem 4

A surface-going projectile is launched horizontally on the ocean from a stationary war-
ship, with initial speed v,. Assume that its propulsion system has failed and it is slowed

by a retarding force given by F(v) = -A¢”. (a) Find its speed as a function of time, v(f).
Find (b) the time elapsed and (c) the distance traveled when the projectile finally comes
to rest. A and « are positive constants.

Hint: There are a handful of ways to solve the ODE that arises in part a (e.g., make a substitution
u=¢%. You should end up with something not too messy that has an In....



Problem 5

Consider the two force functions

(a) F=ix+jy

(b) F =iy —jx

Verify that (a) is conservative and that (b) is nonconservative by showing that the integral
|F . dris independent of the path of integration for (a), but not for (b), by taking two paths
in which the starting point is the origin (0, 0), and the endpoint is (1, 1). For one path take
the line x =y. For the other path take the x-axis out to the point (1, 0) and then the linex =1
up to the point (1, 1).



Problem 6

Show that the vector field F' (z,y) = ycoszi + (sinz +v)j is path-independent.

Hint: Suppose there is a potential function. What assumptions can you make then about that function?



Problem 7
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Indicate which vector fields are conservative and briefly justify.
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Problem 8

The sun is about 25,000 light years from the center of the galaxy and
travels approximately in a circle with a period of 170,000,000 years. The
earth is 8 light minutes from the sun. From these data alone, find the

approximate gravitational mass of the galaxy in units of the sun’s magg. Yoy
may assume that the gravitational force on the sun may be aPProximateq
by assuming that all the mass of the galaxy is at its center.

Hint: Connections between centripetal accelerations and Newtons' Law of Gravitation?

Yung-Kuo (1994)



Problem 9

An Olympic diver of mass m begins his descent from a 10 meter high
diving board with zero initial velocity.

(a) Calculate the velocity V, on impact with the water and the appro-
ximate elapsed time from dive until impact (use any method you choose).

Assume that the buoyant force of the water balances the gravitational
force on the diver and that the viscous force on the diver is bv?.

(b) Set up the equation of motion for vertical descent of the dive
through the water. Solve for the velocity V' as a function of the de tli
¢ under water and impose the boundary condition V = Voatz =0 .

(c) If b/m = 0.4 m™", estimate the depth at which V — Vo/10. -

(d) Solve for the vertical depth () of the diver under water in terms
of the time under water. ,

Hint: Once the diver is in the water, the force due to gravity will be counterbalanced by buoyancy
(i.e., only drag will create a non-zero net force). As for (d), you've seen something like this before....



Bonus

A gun is located at the bottom of a hill of constant slope ¢. Show that the range of the gun
measured up the slope of the hill is

20, cosa sin (¢t — @)
g cos’¢
where ¢ is the angle of elevation of the gun, and that the maximum value of the slope range is

2
Uy

g(1+sing)

Hint: Note that a is relative to flat ground (not the hill). Drawing a diagram helps. Also, trig
identities such as sin(a+ 0) or the like might be useful



