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Mechanics
G. Galileo I. NewtonAristotleApollonius of Perga

von Baeyer



More parabolas....

Much easier to study a jet of water than a 
falling ball (they behave the same!)

Wolfson



http://www.yorku.ca/cberge/2010W2020.html

à This is the course website and will be the main “go to” place 
for all course-related info (e.g., syllabus, slides, chapters for 
reading, exam info, etc…)  









http://www.slate.com/blogs/quora/2015/12/28/will_coding_still_be_relevant_in_a_decade.html

“Absolutely. Not only will coding be relevant 
in 10 years, it will be more relevant than it is 
today. However, the syntax of coding 
languages will continue becoming easier. 
When it started, coding was about holes in 
pieces of cardboard. Then it looked like this: 
00101010101. It now looks a lot more like 
English. As coding languages become more 
English-like, they will be easier to learn, less 
arcane, and thus more popular. And as 
computing systems permeate our lives, 
telling these devices what we want them to 
do, and inventing new uses for them, will 
continue to be more popular.”

Why introduce computing in 2010?



à Harmonic oscillator will be a key topic in PHYS 2010

Looking Ahead: Harmonic Oscillator



% ### HOode45EX.m ###       
% Numerically integrate the damped/driven harmonic oscillator
%   m*x''+ b*x' + k*x = A*sin(wt)
clear
% -----------------------------------------------------
% User input (Note: All paramters are stored in a structure)
P.y0(1) = 0.0;   % initial position [m]
P.y0(2) = 1.0;   % initial velocity [m/s]
P.b= 0.1;  % damping coefficient [kg/s]
P.k= 250.0;   % stiffness [N m]
P.m= 0.01;    % mass [kg]

% sinusoidal driving term
P.A= 0.0;   % amplitude [N] (set to zero to turn off)
fD= 1.05*sqrt(P.k/P.m)/(2*pi);  % freq. (Hz) [expressed as fraction of resonant freq.]

% Integration limits
P.t0 = 0.0;   % Start value
P.tf = 3.0;   % Finish value
P.dt = 0.0001;  % time step
% ----------------------------------------------------------------------
% +++
% spit back out some basic derived quantities
P.wr= 2*pi*fD;  % convert to angular freq.
disp(sprintf('Resonant frequency ~%g [Hz]', sqrt(P.k/P.m)/(2*pi)));
Q = (sqrt(P.k/P.m))/(P.b/P.m);  % quality factor
disp(sprintf('Q-value = %g', Q));
% +++
% use built-in ode45 to solve
[t y] = ode45('HOfunction', [P.t0:P.dt:P.tf],P.y0,[],P);

% ------------------------------------------------------
% visualize
figure(1); clf;
plot(t,y(:,1)); hold on; grid on; 
xlabel('t [s]');    ylabel('x(t) [m]')
% Phase plane
figure(2); clf;
plot(y(:,1), y(:,2)); hold on; grid on; 
xlabel('x [m]');    ylabel('dx/dt [m/s]’)

function [out1] = HOfunction(t,y,flag,P)
% -----------
%   y(1) ... position x
%   y(2) ... velocity dx/dt
out1(1)= y(2); 
out1(2)= -1*(P.b/P.m)*y(2) - (P.k/P.m)*y(1) 

+ (P.A/P.m)*sin(P.wr*t); 
out1= out1’;
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Phase space

§ Change the damping
§ Change the stiffness or mass
§ Change the initial conditions
§ Turn on the (non-autonomous) 

sinusoidal driving term
§ Other types of driving terms? 

(e.g., an impulse)
§ Other changes?

Things to try:



French (1971)

à Think about how you would 
go about making these 
plots…

Steady-state 
frequency 
response

Q is the 
‘quality factor’

Q = wo / g

Resonance

Consider the sinusoidally
“driven” case:



Some Useful #s

French (1971)





“Puzzles” – Bongard problems

Determine the “rule” that is different between the two sides (each of six)

e.g., http://www.foundalis.com/res/bps/bpidx.htm



“Puzzles” – Bongard problems



“Puzzles” – Bongard problems



Problem Solving

French (1971)



Problem Solving

French (1971)



Problem Solving



Problem Solving



“Modeling”

à The notion of change is a lynchpin of physics.... 

Wolfson



“Modeling”

Ø To help put some context in place for the physics ahead, let’s take a slight detour....  

Ø Calculus provides wonderful tools to help study change

Ø In particular, a very useful extension of calculus is known as differential equations

Ø Here comes the fun part: Many problems fall 
under the purview of mathematical modeling

Whether you realize it 
or not, you have 
already been dealing 
with DEs in some 
fashion....



“Mathematical Modeling”

Bender

“This book is designed to teach students how to apply 
mathematics by formulating, analyzing, and criticizing models.”

“The first part of the book requires only elementary calculus and, 
in one chapter, basic probability theory.”

“Although the level of mathematics required is not high, this is not 
an easy text: Setting up and manipulating models requires 
thought, effort, and usually discussion.”

“Often problems have no single best answer, because different models can illuminate 
different facets of a problem. Discussion of homework in class by the students is an 
integral part of the learning process; in fact, my classes have spent about half the
time discussing homework..”

From the preface (1978)



“Mathematical Modeling”

Bender

Ch.1 – “What is modeling?”

“The theoretical and scientific study of a situation centers around a model,
that is, something that mimics relevant features of the situation being studied.
For example, a road map, a geological map, and a plant collection are all
models that mimic different aspects of a portion of the earth's surface.”

“The ultimate test of a model is how well it performs when it is applied to the 
problems it was designed to handle. (You cannot reasonably criticize a geological map 
if a major highway is not marked on it; however, this would be a serious deficiency in a 
road map.) When a model is used, it may lead to incorrect predictions. The model is 
often modified, frequently discarded, and sometimes used anyway because it is better 
than nothing. This is the way science develops.”

“Here we are concerned exclusively with mathematical models, that is, models that 
mimic reality by using the language of mathematics. [...] What makes mathematical 
models useful? If we "speak in mathematics, then:



“Modeling” & Differential equations (DEs)

à A very common/useful tool in our toolbox....

@

2
 

@x

2
=

1

c

2

@

2
 

@t

2

Wave equation

�f = r2
f =

@

2
f

@x

2
+

@

2
f

@y

2
+

@

2
f

@z

2
= 0

Laplace’s equation

Maxwell’s equations

Note: This just a specific case of 
Newton’s 2nd law (F=ma)!

Several basic flavors apparent:
Ø Ordinary (ODE)
Ø Partial (PDE)
Ø Scalar vs. Vector

Harmonic oscillator

Note: Though DEs pervade 
much of 2010 material, 
you are not expected to 
become super-adept at 
solving them for 2010



Lorenz equations

dx

dt

= �(y � x)

dy

dt

= rx� y � xz

dz

dt

= xy � bz

SIR model
(‘compartmental’ model in epidemiology)

I1,8 SYSTEMS OF DIFFERENTIAL EQUATIONS 567

Being able to predict how many people will get sick, and when, is an imporlant step toward con-
trolling an epidemic. This is one of the responsibilities of Britain's Communicable Disease Surveil-
lance Centre and the US's Center for Disease Control and Prevention.

The S-/-J? model
We apply one of the most commonly used models for an epidemic, called the ^9-1-E model, to the
boarding school flu example. The population ofthe school is divided into three groups:

S : the number of susceptibles, the people who are not yet sick
but who could become sick

I - the number of infecteds, the people who are currently sick
fi : the number of recovered, or removed, the people who have

been sick and can no longer inf'ect others or be reinfected.

The number of susceptibles decreases with time, as people become infected. We assume that
the rate people become infected is proportional to the number of contacts between susceptible and
infected people. We expect the number of contacts between the two groups to be proportional to both
S and 1. (If S doubles, we expect the number of contacts to double; similarly, if I doubles, we expect
the number of contacts to double.) Thus we assume that the number of contacts is proportional to
the product, 51. In other words, we assume that for some constant a ) 0,

d,s /
,lt: (

Rate susceptibles
get sick

aSI.

Rate infecteds
-aSI-bLget removed

)-
(The negative sign is used because S is decreasing.)

The number of infecteds is changing in two ways: newly sick people are added to the infected
group, and others are removed. The newly sick people are exactly those people leaving the suscep-
tible group and so accrue at a rate of ctS I (with a positive sign this time). People leave the infected
group either because they recover (or die), or because they are physically removed from the rest of
the group and can no longer infect others. We assume that people are removed at a rate proportional
to the number sick, or bI, where b is a positive constant. Thus,

dI
dt

Rate susceptibles
get sick

Assuming that those who have recovered from the disease are no longer susceptible, the recov-
ered group increases at the rate of bI, so

dR
,1, - bl

We are assuming that having the flu confers immunity on a person, that is, that the person cannot
get the flu again. (This is true for a given strain of flu, at least in the short run.)

In analyzing the flu, we can use the fact that the total population ,S + 1 + fi is not changing.
(The total population, the total number of boys in the school, did not change during the epidemic.)
Thus, once we know S and 1, we can calculate fi. So we restrict our attention to the two equations

-aS I
aSI - bI.

dS
(lt
dI
d,t

dS

dt
= ��IS

dI

dt
= �IS � �I

dR

dt
= �I

à Chaos!

“Modeling” & Differential equations



“Mathematical Modeling”

Bender

“Mathematics and physical science each had important effects on the
development of the other. Mathematics is starting to play a greater 
role in the development of the life and social sciences, and these 
sciences are starting to influence the development of mathematics.”

“We begin with a definition based on the previous discussion: A 
mathematical model is an abstract, simplified, mathematical construct 
related to a part of reality and created for a particular purpose. [...] As 
far as a model is concerned the world can be divided into three parts:

Two key ingredients should be apparent here:
• Figuring out what question you want to try to answer
• What assumptions you are willing to make



Ex.

Question: How fast does a person learn?



Ex.

Hughes-Hallett et al. (2005)

Question: How fast does a person learn?

(very) Simple model:   Rate a person learns = Percentage of task not yet learned 

dy

dt
= 100� yy is the percentage learned as a 

function of time t

524 Chapter Eleven DIFFERENTIAL EQUATIONS

} X.tr WHATISA DIFFERENTIALEQUATION?

h'!*w Fast D*es e Pers*n Le*rn?
Suppose we are interested in how fast an ernployee learns a new task. One theory claims that th:
more the ernployee already knows of the task, the slower he or she learns. In other words. if u :-
the percentage of the task that has already been mastered, afi rly lrlt the rate at which the emplor e.
learns. then dgf,h decreases as y increases.

What can we say about y as a function of time, t? Figure 11.1 shows three graphs whose slop.-
rlylrlt, decreases as y increases. Figure 11.1(a) represents an employee who starts learning at I -
and who eventually masters 1007o of the task. Figure ll.l(b) represents an employee who star:.
later but eventually masters 1007o of the task. Figure 1l.l(c) represents an employee who stan-
learning at t : 0, but who does not master the whole task (since y levels off below 1007o).

(b) y(asapercent)(a) y(asapercent)

tu0
,/

IL -t

100 i
(c) y(asapercent)

100 I'/
L+

Figur* I1.'l : Possible graphs showing percentage of task learned, g, as a function of time, I

Setti*g up a *iffer*ntial *quati*n to fu1*dei l'**w a *erse* Lear*s

To describe more precisely how a person learns, we need more exact infbrmation about how r1y

depends on i7. Suppose, if time is measured in weeks, that

Rate a person learns Percentage oftask not yet learned.

Since g is the percentage iearned by time I (in weeks), the percentage not yet learned by that tin::
is 100 y. So we have

'! - ruu 'a.
clt

Such an equation, which gives information about the rate of change of an unknown function. r-
called a differential equatiotl.

SolvE*g the *ifferential €quatie* Nua:*riceiEy

Suppose that the person starts learning at time zero, so U : 0 when t : 0. Then initially the persi.:
is learnin-e at a rate

? - lnO-u, lOU ;pet rvt'ek.rlt
In other words, if the person were to continue leaming at this rate, the task would be mastered in .,

week. In fact, however, the rate at which the person iearns decreases, so it takes more than a wee\
to get close to mastering the ttisk. Let's assume a five-day work week and that the 1007a per \l'eer
learning rate holds for the whole first day. (lt doesn't, but we assume this for now.) One day is 1,:
of a week, so during the flrst day the person learns 100(1/rt) : 2A%, of the task. By the end of th.
first day the rate at which the person learns has theretbre been reduced to

! :,L)0 - 2U = g0, I p"r.ueck.tlt
Thus, during the second day the person learns 80(1/5) :16%, so by the end of the second day the
person knows 20 + 16 : 36%, of the task. Continuing in this fashion, we compute the approximate
y-valuesl in Table 11. l.
-|Ih;";;r"rr"r,"ro.-i.....9. ll.....lgdaysrvcrecomputcdbythcsamemethod.butomittedfromthetablL'.

y(t) = 100� Ce�tSolution 
(e.g., via “separation of variables”)



Ex.

Hughes-Hallett et al. (2005)

y(t) = 100� Ce�t

11.1 WHAT IS A DIFFERENTIAL EOUATION?

Table '!1.'t Approrimate percentage o.f task learued as a.fwtction of time
Time (working days) i 0 3i4
Percentage learned 89.3

& F*rmul* f*r the S*iutE*n tc ti:* ffiifferenti*E Squati*n
A function U : J(t) which satislies the diflerential equation is called asolution. Figure 11.1 con-
tains graphs of possible solutions and Table I I .1 shows approximate numerical values of a solution
to the equation

"l -'t)tt-a'dt
Later in this chapter, we see how to obtain a formula tbr the solution:

'!l - loo -l Ce-t.
wl.rere C is a constant. To check that this fonnula is comect, we substitute into the differential
equation, giving:

Left side - n' : _.c,, t

tlt
Right side : 100 ,u - L00 (100 + Cc: L) - Ce-t.

Since we get the same result on both sides, g : 100tCe 1 is a solution of this differential equation.

Finding the &rhrtreny **nst*r:t: l*5tiai C*ndit!ens
To find a value for the arbitrary constant C, we need an additional piece of infbrmation-usually
the initial vah-re of y. If, for example, we are told that g - 0 when I : 0, then substituting into

r/-1oot,Cc t

shows us that
0-100 lCc:o, so C: 100.

So the function'q : 100 - 100e ' satisfies the differential equation and the condition that.g - g
when f : 0.

Th* Fer*ily of $eluti*n*
Any solution to this differential equation is of the form y - 100 + Ce: t for some constant C. Like
a family of antiderivatives. this family contains an arbitrary constant! Cl. We say that the general
solution to the dillerential equation dyldt:100 - 37 is the family of frinctions 9 - 100 I Ce L.

The solution 3y - 100 - 100r: I that satisfies the difl'erential equation together with the initial
condition that 'y - 0 when t - 0 is called a partit:ulur solution. The differential equation and
the initial condition together are cal1ed at initial value prcblenr. Several members of the family of
solutions are graphed in Figure I 1.2.

Figure 1l,3: Solution curves for d.u ld,t : 100
Members of the farnily 9 - 100 I C)e t

59.0 i (t] 2

C
- 100

50
C_

Ø Equilibrium points?

Values of y(t) where dy/dt = 0

dy

dt
= 100� y

y(t) = 100

Ø Stability?

Do solutions move towards or 
away from the equilibrium if 
starting nearby?

stable (solution move towards y(t) = 100
with increasing t)

Ø What determines the value of C? initial conditions (à E&U theorem!)

à Note that our ‘model’ (redundantly) 
allows for y greater than 100



Some further common examples

Exponential growth/decay dP

dt
= kP P = P0e

kt

Solution

Newton’s law of heating/cooling

“Newton proposed that the temperature of a hot object decreases at a rate proportional to 
the difference between its temperature and that of its surroundings. Similarly, a cold object 
heats up at a rate proportional to the temperature difference between the object and its 
surroundings.”

11.5 GROWTH AND DECAY *4.3

T*hi* 1! "ri' Volume and outflow in Great Lakes

,,1" ^s l*3r l, - n.^3 *,-.r-(11"::*91:lfr1l i : !I:"iy:-sl1.. i ...Superior
Michigan
Erie
Ontario

t2.2
4.9

0.46
1.6

i 65.2
!| 158
Ii 175

I _?9?

Example2

Solution

According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by

Q:Qoe 038''

When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get

,- - hr(u'l) r6rears.
0.38

When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies

0.01Q0:Qo6 038t.

Solving for t gives
- ln(0.01)

0.38

l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.

temperature

lnitial
temperature ----*1.'"

-='--l.;_----
_.,..'_i:;::::i:ih ..- Room temperature

time

ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
temperatures

T (t) = T0 + Ce�↵t

Solution

Note: Very natural place to think 
about ‘equilibrium points’ and their 
stability

Hughes-Hallett et al. (2005)

dT

dt
= ↵(T

o

� T )

e.g., Nuclear decay, 1st order chemical 
reaction, bacterial growth



Stability

Newton’s law of heating/cooling

T (t) = T0 + Ce�↵t

Solution

Hughes-Hallett et al. (2005)

11.5 GROWTH AND DECAY *4.3

T*hi* 1! "ri' Volume and outflow in Great Lakes
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Example2

Solution

According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by

Q:Qoe 038''

When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get

,- - hr(u'l) r6rears.
0.38

When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies

0.01Q0:Qo6 038t.

Solving for t gives
- ln(0.01)

0.38

l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.

temperature

lnitial
temperature ----*1.'"

-='--l.;_----
_.,..'_i:;::::i:ih ..- Room temperature

time

ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
temperatures

*4S Chapter Eleven DIFFERENTIAL EQUATIONS

giving
H :20.

Regardless of the initial temperature, Il always gets

result, 11 : 20 is called a stable eqtillbrium3 for 11'
closer and closer to 20 as t + oo. As a

' 
- 

B: [0-ekl
t

H :20 + 10e-kt
30

20

10

'\--=**-* * 1--._--.*-*:":=:.: 10

:20 - l}e-kt
t

Fig*r'* tt"**: H :20 is stable equilibrium (,k > 0) Figur*1tr.3T: B : 10 is unstable equilibrium (k > 0)

A different situation is disptayed in Figure 11.37, which shows solutions to the differential
equation 

{:t1r- r,01
d,t

for some fixed ,k > 0. Solving dB ldt: 0 gives the equilibrium B : 10, which is unstable because

if B starts near 10, it moves away as t ---+ oo.
In general, we have the following definitions.

i . en equilibrium solution is constant for all values of the independent variable. The graph

! o An equilibrium is stable if a small change in the initial conditions gives a solution which

i tends toward the equilibrium as the independent variable tends to positire infinity. 
:I ------ - - -' 
:

! . ,q.r equilibrium is unstable if a small change in the initial conditions gives a solution 
I

E tive infinity. 
.t.___-

Solutions which do not veer away from an equilibrium solution are also called stable. If the

differential equation is of the form y' : f (d, equilibrium solutions can be found by setting g/ to
zeto.

Exercises and Problems lor Section 11.5

ffix*r*is*e

L. Each curve in Figure 1 1.38 represents the balance rn a
bank account into which a single deposit was made at
time zero. Assuming continuously compounded interest,
find:

(a) The curve representing the largest initial deposit'
(b) The curve representing the largest interest rate'
(c) Two curves representing the same initial deposit'
(d) Two curves representing the same interest rate'

bank
balance (tV) (ilt)

l

\ i .i ..,,'
| ,'' :-t'

I -.1''l.r'
l!'- -'

(lt)

(r)

L_-. time

3In more advanced work, this behavior is described as asymptotic stability'

F!gur* t l.GS

Note: Very natural place to think 
about ‘equilibrium points’ and their 
stabilitydT

dt
= ↵(T

o

� T )



Some further common examples

Hughes-Hallett et al. (2005)

Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2nd Law leads to:

m
dv

dt
= mg � kv

dv

dt
= � k

m

⇣
v � mg

k

⌘

v =
mg

k

⇣
1� e�kt/m

⌘
Solution

11.6 APPLICATIONS AND MODELING 553

Separating and integrating gives

Solving for u:

grves

l!-,*= !,, J'"
Itr r' ':',9 - kt-e.

$nl

l, - ry -, ktlrnlc: : r.-C r'-ktf,t

,,_ r# _ ,!s kti,t.,

where A is an arbitrary constant. We find A from the initial condition that the obiect starts frorn rest.
so r, - 0 when t : 0. Substituting

tn0o--+--l'"
, lrl(l

k:

Thus 
.. nlg 'tt'tg - L,tiu,. _ Utt , ktlrn.l 

.,'tt,.
The graph of this function is in Figure 11.215. The horizontal asymptote represents the terminal

veloci4', rn.q f 1.,:.

Air resistance, A'rr Terminal velocity

Force due to
gravily, rn,g

Figure 11.44; Forces acting on a falling object Figure 1 1.45: Velocity of falling dust peulicle assuming
that air resistance is kr.,

Notice that the terminal velocity can also be obtained from the differential equation by setting
tl r'f tlt U and solving lor r':

cl,t,nt*:mS 'kt'' :0 so ?r:

eompartmental Analysis: A Reservclr

trLlJ

k

Many processes can be modeled as a container with various solutions flowing in and out-for ex-
ample, drugs given intravenously or the discharge of pollutants into a lake. We consider a city's
water reservoir, fed partly by clean water from a spring and partly by run-ofi from the surrounding
land. In New England, and many other areas with much snow in the winter, the run-off contains salt
which has been put on the roads to make them safe for driving. We consider the concentration of
salt in the reservoir. If there is no salt in the reservoir initially, the concentration builds up until the
rate at which the salt is entering into the reservoir balances the rate at which salt flows out. If, on the
other hand, the reservoir starts with a great deal of salt in it, then initially the rate at which the salt is
entering is less than the rate at which it is flowing out, and the quantity of salt in the lake decreases.
In either case, the salt concentration levels off at an equiiibrium value.

Note: We will come back to this in more 
detail next lecture



Reference

dT

dt
= ↵(T

o

� T )

Note: This is essentially the same form of 
eqn. as others we saw earlier (e.g., 
Newton’s Law of Cooling)



Reference (SOL)

T (t) = T0 + Ce�↵t
Note: The solution is essentially the 
same too, just written in a more 
general way



Reference (SOL)



Mechanics à “Change”

Ø Where is the cannonball? 
“When” matters too, right?

Ø Let’s just consider 1-D for now 
(e.g., height of the cannonball; 
we’ll come back to 2-D shortly)

Ø Consider three basic quantities:
• Position [m]
• Speed or velocity [m/s]
• Acceleration [m/s2] 

Ø These are all inter-related via how things are changing with time



Knight

Position

Velocity

Acceleration

Derivative
(re time)

Derivative
(re time)



The door swings both ways.....

Position

Velocity

Acceleration

Derivative
(re time)

Derivative
(re time)

Integrate
(re time)

Integrate
(re time)

à Sometimes integration is 
called “anti-differentiation”

NOTE: Numerically, integration 
is typically much easier than 
differentiation



Ex.

Knight

Note: Implicitly buried in the “model” here is the notion that we treat the ball 
like a “particle” (or better yet, a point). That is, we don’t worry about its 
rotation, the moment of intertia, etc… Further, note that we also make other 
(implicit) simplifications, such as neglecting friction, etc…

à Generally helpful to consider what (stated & unstated) 
simplifying assumptions are being made….



Ex.

Knight

ANS

Question: Why is acceleration 
only non-zero on the downward 
incline?



Ex. - Velocity vs Speed

ANS
a & b only (why?)

à Think carefully about what implicit assumptions are built-in to things...



Wolfson

Question: Where do these formulae (which are useful for solving problems!) come from?

à You should feel 
comfortable deriving 
these equations

Equations of motion



Knight

à “Initial 
conditions” (ICs) 
matter


