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French (1971)



von Baeyer



Mechanics

Apollonius of Perga Aristotle G. Galileo I. Newton

von Baeyer



More parabolas....

Much easier to study a jet of water than a
falling ball (they behave the same!)

Wolfson



http://www.yorku.ca/cberge/2010W2020.html

- This is the course website and will be the main “go to” place
for all course-related info (e.g., syllabus, slides, chapters for
reading, exam info, etc...)












Why introduce computing in 20107

“Absolutely. Not only will coding be relevant
in 10 years, it will be more relevant than it is
today. However, the syntax of coding
languages will continue becoming easier.
When it started, coding was about holes in
pieces of cardboard. Then it looked like this:
00101010101. It now looks a lot more like
English. As coding languages become more
English-like, they will be easier to learn, less
arcane, and thus more popular. And as
computing systems permeate our lives,
telling these devices what we want them to
do, and inventing new uses for them, will
continue to be more popular”

http://www.slate.com/blogs/quora/2015/12/28/will_coding_still_be_relevant_in_a_decade.html



Looking Ahead: Harmonic Oscillator

- Harmonic oscillator will be a key topic in PHYS 2010

i+ vt +wir =0



% sinusoidal driving term

P.A= 0.0; % amplitude [N] (set to zero to turn off)
[expressed as fraction of resonant freq. ]

fD= 1.05*sqgrt(P.k/P.m)/(2*pi); % freq.

% Integration limits

P.t0 = 0.0; % Start wvalue

P.tf = 3.0; % Finish value

P.dt = 0.0001; % time step

Y
% +++

% spit back out some basic derived quantities

P.wr= 2*pi*fD; % convert to angular freq.

% ### HOOdeAdSEX.m ###

% Numerically integrate the damped/driven harmonic oscillator
% m*x' '+ b*x' + k*x = A*sin(wt)

clear

Y

% User input (Note: All paramters are stored in a structure)
P.y0(l) = 0.0; % initial position [m]

P.y0(2) = 1.0; % initial velocity [m/s]

P.b= 0.1; % damping coefficient [kg/s]

P.k= 250.0; % stiffness [N m]

P.m= 0.01; % mass [kg]

disp(sprintf( 'Resonant frequency ~%g [Hz]', sqrt(P.k/P.m)/(2*pi)));

Q = (sqgrt(P.k/P.m))/(P.b/P.m); % quality factor

disp(sprintf('Q-value = %g', Q));
% +++
% use built-in ode45 to solve

[t Y] = oded45( 'HOfunction', [P.tO:P.dt:P.tf],P.y0,[]1,P);

% visualize

figure(1l); clf;

plot(t,y(:,1)); hold on; grid on;
xlabel('t [s]'); ylabel('x(t) [m]")
% Phase plane

figure(2); clf;

plot(y(:,1), v(:,2)); hold on; grid on;

xlabel('x [m]'); ylabel('dx/dt [m/s]")

function [outl] = HOfunction(t,y,flag,P)

oo

(1) ... position x

y(2) ... velocity dx/dt

outl(1l)= y(2);

outl(2)= -1*(P.b/P.m)*y(2) - (P.k/P.m)*y(1l)
+ (P.A/P.m)*sin(P.wr*t);

outl= outl’;
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Things to try:

= Change the damping

= Change the stiffness or mass

= Change the initial conditions

=  Turn on the (non-autonomous)
sinusoidal driving term

= Other types of driving terms?
(e.g., an impulse)

=  Other changes?
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Resonance

Consider the sinusoidally
“driven” case:

F, .
T+ T+ wga: S
m
Steady-state
frequency Q _ a)o/y/ Qs the

response quality factor

- Think about how you would
go about making these
plots...

French (1971)



Some Useful #s

French (1971)






“Puzzles” — Bongard problems

Determine the “rule” that is different between the two sides (each of six)
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e.g., http://www.foundalis.com/res/bps/bpidx.htm



“Puzzles” — Bongard problems




“Puzzles” — Bongard problems




Problem Solving

French (1971)



Problem Solving

French (1971)



Problem Solving




Problem Solving




“Modeling”

4.1 The Wrong Question

Actually, “What keeps things moving?” is the wrong question. In the early 1600s,
Galileo Galilei did experiments that convinced him that a moving object has an intrinsic
“quantity of motion” and needs no push to keep it moving (Fig. 4.1). Instead of answering
“What keeps things moving?,” Galileo declared that the question needs no answer. In so
doing, he set the stage for centuries of progress in physics, beginning with the achieve-
ments of Issac Newton and culminating in the work of Albert Einstein.

The Right Question

Our first question—about why the spacecraft keeps moving—is the wrong question. So
what’s the right question? It’s the second one, about why the baseball’s motion changed.
Dynamics isn’t about what causes motion itself;|it’s about what causes changes in motion.
Changes include starting and stopping, speeding up and slowing down, and changing
direction. Any change in motion begs an explanation, but motion itself does not. Get used
to this important idea and you’ll have a much easier time with physics. But if you remain a
“closet Aristotelian,” secretly looking for causes of motion itself, you’ll find it difficult to
understand and apply the simple laws that actually govern motion.

— The notion of change is a lynchpin of physics....

Wolfson



“Modeling”

> To help put some context in place for the physics ahead, let’s take a slight detour....

> Calculus provides wonderful tools to help study change

> In particular, a very useful extension of calculus is known as differential equations

Whether you realize it
or not, you have
already been dealing
with DEs in some
fashion....

> Here comes the fun part: Many problems fall
under the purview of mathematical modeling



“Mathematical Modeling”

From the preface (1978)

“This book is designed to teach students how to apply
mathematics by formulating, analyzing, and criticizing models.”

“The first part of the book requires only elementary calculus and,
in one chapter, basic probability theory.”

“Although the level of mathematics required is not high, this is not
an easy text: Setting up and manipulating models requires
thought, effort, and usually discussion.”

“Often problems have no single best answer, because different models can illuminate
different facets of a problem. Discussion of homework in class by the students is an

integral part of the learning process; in fact, my classes have spent about half the
time discussing homework..”

Bender



“Mathematical Modeling” Ch.1 - “What is modeling?”

“The theoretical and scientific study of a situation centers around a model,
that is, something that mimics relevant features of the situation being studied.
For example, a road map, a geological map, and a plant collection are all
models that mimic different aspects of a portion of the earth's surface.”

“The ultimate test of a model is how well it performs when it is applied to the
problems it was designed to handle. (You cannot reasonably criticize a geological map
if a major highway is not marked on it; however, this would be a serious deficiency in a
road map.) When a model is used, it may lead to incorrect predictions. The model is
often modified, frequently discarded, and sometimes used anyway because it is better

than nothing. This is the way science develops.”

“Here we are concerned exclusively with mathematical models, that is, models that
mimic reality by using the language of mathematics. [...] What makes mathematical
models useful? If we "speak in mathematics, then:

Bender



“Modeling” & Differential equations (DEs)

Harmonic oscillator

. . 9
—> A very common/useful tool in our toolbox.... T+ YC+w, T = 0

Note: Though DEs pervade

Wave equation much of 2010 material,
you are not expected to
82¢ 1 (‘92¢ become super-adept at

solving them for 2010 Note: This just a specific case of

Newton’s 2" law (F=ma)!

0r2 2 Ot2

Laplace’s equation

82f an azf Maxwell’s equations
72 __ = J _
Af_vf_8x2+8y2+8z2 0

Several basic flavors apparent:
> Ordinary (ODE)

> Partial (PDE)

> Scalar vs. Vector




“Modeling” & Differential equations

Lorenz equations

dx
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— Chaos!

SIR model
(‘compartmental’ model in epidemiology)
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“Mathematical Modeling”

“Mathematics and physical science each had important effects on the
development of the other. Mathematics is starting to play a greater
role in the development of the life and social sciences, and these
sciences are starting to influence the development of mathematics.”

“We begin with a definition based on the previous discussion: A
mathematical model is an abstract, simplified, mathematical construct
related to a part of reality and created for a particular purpose. [...] As
far as a model is concerned the world can be divided into three parts:

Two key ingredients should be apparent here:
- Figuring out what question you want to try to answer
- What assumptions you are willing to make

Bender



Question: How fast does a person learn?



Question: How fast does a person learn?

(very) Simple model: Rate a person learns = Percentage of task not yet learned

yis the percgntage learned as a @ — 100 — Y
function of time ¢ dt
Solution y(t) — 100 — Ce—t

(e.g., via “separation of variables”)

Hughes-Hallett et al. (2005)



= - Note that our ‘model’ (redundantly)
dy Y allows for y greater than 100

Y 100 —
dt J

y(t) = 100 — Ce*

100

» Equilibrium points?

Values of y(z) where dy/dt = 0

1) =100 Figure 11.2: Solution curves for dy /dt = 100 — vy:
Members of the family y = 100 4+ Ce ™!
» Stability?
Do solutions move towards or stable (solution move towards y(¢) = 100
away from the equilibrium if with increasing 1)

starting nearby?

» What determines the value of C? initial conditions (= E&U theorem!)

Hughes-Hallett et al. (2005)



Some further common examples

Exponential growth/decay

Newton’s law of heating/cooling

dP

= —kP

dt

Solution

P = Pyef

e.g., Nuclear decay, 1%t order chemical
reaction, bacterial growth

“Newton proposed that the temperature of a hot object decreases at a rate proportional to
the difference between its temperature and that of its surroundings. Similarly, a cold object
heats up at a rate proportional to the temperature difference between the object and its

surroundings.”

drl

T,-T
o = ol )

Solution

T(t) =Ty + Ce

temperature Note: Very natural place to think
about ‘equilibrium points’ and their
Initial "1\ stabili’cyq i
temperature
p ~l \\'
N
R g

e

<— Room temperature

time

Hughes-Hallett et al. (2005)



Stability

Newton'’s law of heating/cooling

arl
2T —

dt (To = T)

Solution

T(t) =Ty + Ce™

temperature

Initial —" .
temperature Ly

Note: Very natural place to think
about ‘equilibrium points’ and their
stability

<— Room temperature

time

is a horizontal line.

tive infinity.

e An equilibrium solution is constant for all values of the independent variable. The graph

e An equilibrium is stable if a small change in the initial conditions gives a solution which
tends toward the equilibrium as the independent variable tends to positive infinity.

e An equilibrium is unstable if a small change in the initial conditions gives a solution
curve which veers away from the equilibrium as the independent variable tends to posi-

Hughes-Hallett et al. (2005)



Some further common examples

Note: We will come back to this in more

detail next lecture
Falling body: Terminal velocity

Assume air resistance is proportional to velocity, the Newton’s 2™ Law leads to:

dv Air resistance, kv
m— =mg — kv
dt
Force due to
dv k ( mgqg > gravity, mg
- = v — ——
dt m k ' |

Figure 11.44: Forces acting on a falling object

Solution v = % (1 _ e—kt/m)

Hughes-Hallett et al. (2005)



Reference

Note: This is essentially the same form of
egn. as others we saw earlier (e.g.,
Newton’s Law of Cooling)

dT
& T, —T
Ol )



Reference (SOL)

Problem 1. A first-order, linear differential equation with constant coefficients and a constant
inhomogeneous (drive or input) term has an exponential solution. Therefore, the solution can be
written in the form

n(t) = Neo + (no — noo) e T

where nq = n(0) is the initial value of n(t) and n,, = lim;_,, n(t) is the final value of n(t). The
form of this solution can be verified by evaluating n(¢) at ¢ = 0 and ¢t — oo. Substitution into the
differential equation shows that this solution satisfies the differential equation. The solutions for
cases i-vi are shown in Figure 1. The solutions for part a (i and i1) have the same initial and final
values but different time constants (by ¢ = 10 s, curve ii is just above 6 and has not yet reached
its final value of 10). The solutions for part b (iii and iv) have the same initial values and different
final values. Although curve iv was calculated with the same time constant as in iii, it doesn’t make
sense to compare the time constants of the curves, since curve iv isn’t changing. The solutions for
part ¢ (v and vi) have different initial and final values and the same time constants.

Note: The solution is essentially the

same too, just written in a more T(t) — TO _I_ Cfe—()zt

general way



Reference (SOL)




Mechanics =2 “Change”

> Where is the cannonball?
“When” matters too, right?

> Let’s just consider 1-D for now
(e.g., height of the cannonball;
we’ll come back to 2-D shortly)

> Consider three basic quantities:
« Position [m]

- Speed or velocity [m/s]

« Acceleration [m/s?]

> These are all inter-related via how things are changing with time




Acceleration
A

Derivative
(re time)

Velocity

A

Derivative
(re time)

Position

Knight



The door swings both ways.....

Acceleration

Integrate
(re time)

Velocity

Integrate
(re time)

A4

v

A

A

Position

NOTE: Numerically, integration
is typically much easier than
differentiation

Derivative
(re time)

Derivative
(re time)

- Sometimes integration is
called “anti-differentiation”



Note: Implicitly buried in the “model” here is the notion that we treat the ball
like a “particle” (or better yet, a point). That is, we don’t worry about its
rotation, the moment of intertia, etc... Further, note that we also make other
(implicit) simplifications, such as neglecting friction, etc...

- Generally helpful to consider what (stated & unstated)
simplifying assumptions are being made....

Knight



ANS

Question: Why is acceleration
only non-zero on the downward
incline?

Knight



Ex. - Velocity vs Speed

ANS
a & b only (why?)

— Think carefully about what implicit assumptions are built-in to things...



Equations of motion

Question: Where do these formulae (which are useful for solving problems!) come from?

= You should feel
comfortable deriving
these equations

Wolfson



- “Initial
conditions” (ICs)
matter

Knight



