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Where's the Pair?

Only two of the shapes below are exactly the same — can you find
the matching pair?




Mechanics: Shifting to higher dimensions....

O - Vo, >0 > Perhaps for a ball confined to a track,
s a one-spatial-dimensional (1-D)
description is sufficient....

> ... but for the
cannonball, a higher

dimensionality is needed
(e.g., both horizontal and
vertical position matters)

= p s,

von Baeyer



Vectors....

dl' Note: Look carefully!
What does this V=—= _kgt +v Notice the little
equation represent? dt 0 things, like the bold

font

— Projectile motion

2
%=—kmg r=ix +kz

We may have started off
from a different place... (i.e.,
Newton's 2"¢ Law and a
handful of assumptions)

And we need to ensure we
defined the relevant quantities
of interest!

(e.g., r describes what
precisely?)
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Nlccolo artaglia (1499- 1557)

- As we will see later on, 45° is
not technically correct for “real”
cannonballs....

Question: What angle of elevation would a

cannon achieve its greatest range?

“Tartaglia’s correct theoretical answer of 45°
surprised the experts; they thought it would be
smaller [...] but he refrained from publication. The
reason for his diffidence is highly creditable: He
felt it would be immoral to use science to help
[soliders] slaughter [soliders] more efficiently”

von Baeyer



Mechanics: Shifting to higher dimensions....

» Standard coordinate
system: 3-D Cartesian

> Vectors will be a key
means to represent
various physical
guantities

dr
v=$-=—kgt+v0
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Review: Vector Representations

> Vectors are very useful for representing various physical quantities....

Here there’s a nonzero
net force acting on the
car, so the car’s motion
is changing.

Position,
@) velocity, o
/ _ The three forces sum to zero,
Aiis (e  ond A s the acceleration so the plane moves in a straight
difference difference v, — ;. line with constant speed.
¥y = T{swmn — "'-_) b=
i air éF"e[ =0 —
engine
; J (b)
Thetslf angles FIGURE4.2 The net force determines the
b) are tne s'ame, (C) ; . ’ )
( 50 the triangles change in an object’s motion.

are similar.
Forces

FIGURE 3.22 Position and velocity vectors for
two nearby points on the circular path.

Wolfson



Review: Vector Components & Unit Vectors

> Choose a coordinate system (such
provides a key frame of reference)

FIGURE 3.9 A conventional xy-coordinate
system and the quadrants of the

xy-plane.

90°

I v

Knight

—> Cartesian system is a good starting
choice for 2-D problems

A is the sum of the
vectors A,7and A, ]

Note: 3-D pictures can
appear a bit crowded

(b)

FIGURE 3.5 Vectors in (a) a plane and (b) space,
expressed using unit vectors.

Wolfson



Review: Vector Components & Unit Vectors

A is the sum of the
vectors A, 7and A ]

> Unit vectors stem directly from the
chosen frame and allow a compact

way to express vectors via
components

FIGURE 3.10 Component vectors A, and
A are drawn parallel to the coordmate
axes such that A = 4, +A

]

The y-component The x-component

vector is parallel  vector is paraliel
to the y-axis. to the x-axis.
Knight
> “Components” can be vectors or (b)
scalars combined w/ the unit vectors FIGURE 3.5 Vectorsin (a) a plane and (b) space,

expressed using unit vectors.



Review: Vector Components & Unit Vectors Here’s the y-  This is the

component ma§nitude
of A. - Of A

To summarize: P
[2-D] Two pieces of information can be
expressed in different ways:
- X—y coordinates
- magnitude & direction (i.e., phase)
- component vectors

- components tied to unit vectors

This is A’s” Here’s the x-
direction. component of A.

FIGURE 3.4 Magnitude/direction and

S ., ) component representations of vector A.
A dummy’s guide to “component vectors”:

11 %:f

[ 1
e i’” ””»
i %f:"i o

(v - B |

L

Determmmg the components of a vector = e

© The absolute value [A i of the x-component A, is the magmtude of the com-~
ponentvectorA - , - - - '

(2 The signof A, 1s posmve if A pomts in the posmve x—d1rect1on negatlve 1f '
A points in the negative x-direction. = |

©® The y—component A 5 deterrmned snmlarly

Knight



Review: Vector "Math L Equality of Vectors

The equation

A

B

or

(A, Ay, A,)=(B,, B, B,)

is equivalent to the three equations

IL. Vector Addition
The addition of two vectors is defined by the equation

A+B=(A,,A,,A,)+(B,.B,,B,)=(A,+B,,A,+B,, A, +B,)

IIL. Multiplication by a Scalar
If ¢ is a scalar and A is a vector,

cA=c(A;, Ay, A;)=(cA;,cAy, cA;)=Ac

Fowles & Cassidy



Review: Vector "Math"

IV. Vector Subtraction
Subtraction is defined as follows:
A—-B=A+(—-l)B=(A,—B,,Ay—By,Az—Bz) (1.3.5)

That is, subtraction of a given vector B from the vector A is equivalent to adding
-Bto A.

V. The Null Vector
The vector O =(0,0,0) is called the null vector. The direction of the null vector is unde-
fined. From (IV) it follows that A — A = O. Because there can be no confusion when
the null vector is denoted by a zero, we shall hereafter use the notation O = 0.

VI. The Commutative Law of Addition
This law holds for vectors; that is,

A+B=B+A (1.3.6)
because A, + B, = B, + A,, and similarly for the y and z components.

VII. The Associative Law
The associative law is also true, because

A+(B+C)=(A,+(B,+Cp),A,+(B,+C)),A.+ (B, +C,))
=((A.+B)+C,,(A,+B)+C,, (A, +B,))+C,) (1.3.7)
=(A+B)+C

VIII. The Distributive Law
Under multiplication by a scalar, the distributive law is valid because, from (II)
and (I11),

c(A+B)=c(A,+B,,A,+B,,A,+B,)
=(c(A;+B,),c(A,+B,),c(A, +B,)) (1.3.8)
=(cA, +cB,, cAy + cBy, cA, +cB,)
=cA,+cB

Fowles & Cassidy



Review: Vector "Math"

IX. Magnitude of a Vector
The magnitude of a vector A, denoted by |A| or by A, is defined as the square root
of the sum of the squares of the components, namely,

V2
A=|A|=(A2+A2+A%) (1.3.9)

where the positive root is understood. Geometrically, the magnitude of a vector is
its length, that is, the length of the diagonal of the rectangular parallelepiped whose
sidesare A,, A,, and A, expressed in appropriate units. See Figure 1.3.5.

X. Unit Coordinate Vectors
A unit vector is a vector whose magnitude is unity. Unit vectors are often designated
by the symbol e, from the German word Einheit. The three unit vectors

e.=(1,0,0) e,=(0,1,0) e.=(0,0,1) (1.3.10)

are called unit coordinate vectors or basis vectors. In terms of basis vectors, any
vector can be expressed as a vector sum of components as follows:

A=(A,,AA)=(A,,0,0)+(0,A,,0)+(0,0,A,)
=A,(1,0,00+4,(0,1,00+A,(0,0,1) (1.3.11)
=e A, +e, A, +e A,

A widely used notation for Cartesian unit vectors uses the letters , j, and k, namely,

Common convention i=e, j=e k=e, (1.3.12)

Fowles & Cassidy



Review: Vector "Math" & Work
- What about multiplying vectors?

> Work is the energy transferred between systems

via an applied force Force and displacement
are in the same direction,

so work W = FAx.

Common definition Common definition
of work of the "dot product"
75
W= F-dr A-B = ABcos#
n
"Scalar Product" A-B=A,B, + A,B,+A,B,

Distributive Rule: A+ (B+C)=A,(B,+C,)+A,(B,+C,) +A,(B,+C))
=A,B,+A,B,+A,B,+A,C,+A,C, +A,C,

=A.-B+A.C
AoB AoB i‘i=j‘j=k'k=l
cos@ = = . .
IAHBI AB i.J:i.k::J.k:O



Review: Vector "Math" & Torque

- What about multiplying vectors?

Figure 8-24 Torque 7 is the
rotational analog of force and
takes into account the distance
r between where a force F is
applied and the rotation axis.
Torque also takes into account
the angle ¢ between the force
vector F and the 7 vector that
points from the rotation axis to
the point at which the force is

applied. Rotation axis

T—=7rxF T =rFsing

Scalar version (figure above motivates
where this comes from...)

Kesten & Tauck



Aside/Looking Ahead: Vector nature of angular quantities

We'll come back to angular

(a) momentum a bit downstream...

Figure 8-35 (a) No single vector
that lies in the plane of rotation
indicates the direction of rotation.
(b) The angular momentum
vector L points in a direction

Which one vector represents the
rotational motion? (None of them)

(b) :(1:; :snigulafn : d:;z_l;:mful - ' perpf.:ndicular to the plane of
to the rotation plane. % rotation.

| Is angular momentum up or down? The

| direction is up in a rlght-handed sense. Curl

| the fingers on your right hand in the direction
' of motion and stick your thumb straight out;
your thumb points in the direction of the

angular momentum vector.
Kesten & Tauck



Review: Cross Product

Ac=axb

Order matters!

Ultimately, this is a convention....

o Vc’=bxa

Resnick & Halliday



Right-hand Rule (RHR)

Key aspect here to get correct is that your
fingers turn a towards b through the
smaller angler

Resnick & Halliday



Right-hand Rule (RHR)

» 8N

Right hand rule: Curl
the fingers on your
right hand from A to B
along the closest path.
Stick out your thumb;
it points in the direction
of C, the result of the

cross product A x B.

QL
I
)
X
+- 1}
Al
-

o

]_l: and B lie in the xy plane in this example.
C points in the positive z direction.

Rotation axis

Kesten & Tauck



Vector Product

"Vector Product" AXB= (Asz "Asz, A,B,-A,B,, A:By _AyBx)

ixizjxj=kxk=0
17 AxB=i(A,B,—A,B,) +j(A,B,~A,B,) +k(A,B, - A,B,)

jxk=i=-kxj
iXj=k=—jxi
kxi=j=-ixk _ ,
Adding determinants to the fray...
.AyAz 1A, A, kAxAy
A><B—nBsz +j BB, + B, B,
ijk
B,Bsz AXB+C)=AxXxB+AXxC

n(AXB)=(nA)XB=AX(nB)

Fowles & Cassidy



Vector Product

How does one go from the

"vector" version of the cross T— 7 X I-':‘ T =17rF SiIlQD
product to the scalar version?

AxB=i(A,B,~A,B) +j(A,B,~A,B) +k(A,B,— A,B)
2 2 2 2
JAXB[*=(A,B,—A,B)"+(A,B,—A,B,)’ +(A,B,—A,B,)

|AxB[* =(A2 +A} +A})(B} +B] +B})-(A,B, +A,B, +A,B,)’

IAXBfF=A’B>~ (A - B)’ |A X B|=AB(l — cos’6)""* = AB sin 8

Fowles & Cassidy



Connecting Vectors to Mechanics

3.2 Velocity and Acceleration Vectors

We defined velocity in one dimension as the rate of change of position. In two or three
dimensions it’s the same thing, except now the change in position—displacement—is a
vector. So we write

s A
Vv = Xt (average velocity vector) 3.3)

for the average velocity, in analogy with Equation 2.1. Here division by Az simply means
multiplying by 1/At. As before, instantaneous velocity is given by a limiting process:
v =1 LS 1 (instant locit tor) 3.4
v = lim — = — (instantaneous velocity vector .
A0 Ar dt Y
Again, that derivative dr/dt is shorthand for the result of the limiting process, taking ever
smaller time intervals At and the corresponding displacements A7. Another way to look at
Equation 3.4 is in terms of components. If 7 = x7 + y], then we can write
dr _dx,  dy,

= —] + —7 = ‘A—‘,— 7
dr drt g T T

-
y =

where the velocity components v, and v, are the derivatives of the position components.
Acceleration is the rate of change of velocity, so we write

A7

a= Ar (average acceleration vector) (3.5)
for the average acceleration and
- .. AV dv .
a = lim — = — (instantaneous acceleration vector) (3.6)

a—0 At dt

for the instantaneous acceleration. We can also express instantaneous acceleration in
components, as we did for velocity:

dv de,\ dva

— Obvious implication here is that
our "vector math" also needs to
include vector calculus

Z=E=Ez+?]=axi+aﬁ
v =V, +at  (for constant acceleration only) (3.8)
7 =7+ Vot +3at’ (for constant acceleration only) (3.9)

Wolfson



A classic example: “Maria” riding a Ferris wheel

FIGURE 4.1 Using Tactics Box 4.1 to find

Maria’'s acceleration on the Ferris wheel.

(a)

o

-
-
»

o

The lengths of all the velocity
vectors are the same,
mdicating constant speed. 5

The direction of each vector is
different. This is a changing
Era., d

«

velocity. 3

4. »:fggwec«afm-wwﬁu'

&
r
&

Maria moves at constant speed but not at
constant velocity. Thus she is accelerating.

George Washington Gale Ferris Jr.

No matter which dot
is selected, finding A¥
like this will show

/  that it points to the

i center of the circle.

Y o Acceleration
“"‘é%z.t,%:’,, vectors

r\.‘ @ All acceleration

: vectors point to the
g > i
center of the circle.

<l

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

Knight



Vector "Calculus" & Mechanics z

r=ix +jy + kz

x = x(t) y =y(t) z=2(t)

oo ds o As_ L [(An) +(Ay)® +(A2)"T" v =£=ia’c+jg+kz
dt A—0 At At—0 At dt

Note: Diacritical dots (i.e., dots above a variable) is a
common convention for a time derivative

a =i% + jij + kz

Fowles & Cassidy



Ex./Review: Projectile Motion

“Tartaglia’s correct theoretical answer of 45°
surprised the experts; they thought it would be
smaller [...] but he refrained from publication. The
reason for his diffidence is highly creditable: He
felt it would be immoral to use science to help
[soliders] slaughter [soliders] more efficiently”

\g ; /r///// 1
\ ”,' A ///
RN ) ‘W ' / f)
S = \u .ﬂ“ :
¥ E LT .
(i AN \\
= § S .\\\\\\ x\\w\\\\\\\\\.v =

Niccolo Tartaglia (1499-1557)

Fowles & Cassidy



Ex./Review: Projectile Motion

Vector representation of the problem

FIGURE 4.14 A projectile launched with
initial velocity v,.

b 4
| Vo |
E AN Parabolic
; Q& :
@ ,&%QQ.J~' trajectory
; '\'S’\' /
I S
:>6- & ‘ X
Vo, = V€086

Breaking it up into components

Two Approaches we could take:
1) Pair of 1-D calculations
2) Vector calculation

FIGURE 4.15 The velocity and
acceleration vectors of a projectile
moving along a parabolic trajectory.

Tt ey S g e S
the vertical component

The horizontal
{ BC RBOMTZ0neGg:

component of velocity

9.8

Velocity vectors are
shown every 1 s.
Values are in m/s.




Ex./Review: Projectile Motion 1) Pair of 1-D calculations

Eqgns. for linear motion under
constant acceleration:

v =1, + at

X — Xyp = vpt +

Initial condition:
Vox = Vg cos 0
y = Vgsing

=
=
|

Breaking up into components:

X — X9 = Vp,l + Eaxt
L
Y — Yo = Voyt + ant

But (assuming no

b a, = 0 m/s®
air resistance)

Uy = Vpx
X — Xo = Vgyt

Kesten & Tauck



Ex./Review: Projectile Motion 1) Pair of 1-D calculations

Uy = Vox

X — Xo = Vg,tl + Ea,ct2

1 2
Y—9% = ont + ant

An object launched only under the
influence of Earth’s gravity follows
a parabolic path.

Both the velocity and angle of
the path with respect to the
horizontal are always changing
during projectile motion.

This allows us to effectively
X — Xg = vat re-express time....

Kesten & Tauck



Ex./Review: Projectile Motion 2) Vector calculation

2 de ., .
r(t) = ibt +j at—gt7 +kO v=—-=ib+jlc-gt)
s dv
dr %
V= dar _ kgt +v
dt 0
Note the (slight) change in ’
coord system as assumed
at start of lecture!
2 21172
v=[b"+(c—-gt)’]
0 X

Fowles & Cassidy



Ex./Review: Projectile Motion 1) Pair of 1-D calculations

We can carry the analysis [ Yoy YR e
out a bit further... Y=X= (VOx (x = xo) 2\ 3, (x — xo)

y—30= (2200 (2 — 20) 3 (7 Ers ) (2 — 302

v cos 6 (vycosf)?

g(x — xo)2

y — yo = tanf(x — xg) — "projectile trajectory”

2v cos?6

"projectile range"
= — Y0

20, Vg, _ 2v3 sin 0 cos 0
g g

Y= % (x T xO)range P

Kesten & Tauck



Ex./Review: Projectile Motion

y
2 - -———
VO . . - - =
x = ? sin 26, (horizontal range) 2" S
;;0 7 | \\

8 2 . . . v I ¥

y=xtanfy — —5 5 X (projectile trajectory) - \
2V0 COS 90 00 : \\
Vx0 \\ X
Horizontal range .
. . FIGURE 3.17 Parabolic trajectory of a projectile.
Note: sin2A = 2sin Acos A jectony ol a proj

Wolfson

R \\\\\

Tartaglia’s discovery should now be readily apparent...




2

%
x = ?0 sin 26, (horizontal range)
B g ) o
y=xtanty — —5 (projectile trajectory)
2V0 COS 90
Both the horizontal range and the peak 1203 750
height depend on the launch angle. 1004
605
80+
g 60- 45°
Peak - T
height 30°_
V15
0

1 I I | | 1
0 50 100 150 200 250 300

x (m)

Horizontal range

Kesten & Tauck



We want v, so that the hammer will
just clear the point x = 3.1 m,

y = L6m.
i D e N it b
T
»Z Lem
~A35°
: X I m
T w4
|

|
——3.I m—
FIGURE 3.18 Our sketch for Example 3.5.

— Practice these sorts of “projectile motion” problems, keeping
careful track of what assumptions are stated (or need to be presumed!)

Wolfson



Projectile Motion

2
Vo . .
X = —sin 26, (horizontal range)
120
157
100
60°,
80+
E 604 [ / 45
=8
40— 300
// _
%2, ,,TI;?'/?" A 2 15°
’\ / ; 0 T T T T 1 1
4 ; : 0 50 100 150 200 250 300

x (m)

\\ *«\\\




Recall
Falling body: Terminal velocity

Air resistance, kv

Force due to
gravity, mg

Y

Figure 11.44: Forces acting on a falling object

Back to our vector
equation for a projectile

md—zr =-k g =
dt? e dt®

- Let's come back a bit later on in the
semester to this problem...

Adding in linear air resistance

Assume air resistance is proportional to
velocity, the Newton’s 2" Law leads to:

dv L
mMm— =1MTqg — RV
a Y
dv k mg .
- = (’U — _) Linear 15t order ODE
dt m k

: L mg —kt/m)
Solution ¢ = —= (1 —e
k

Or in component form:

Hughes-Hallett et al. (2005)



Height (m)

Baseball trajectories

o0
o
i

3

x(m)

1 |
1 L

100 200 300 400

Short version: In the "real world", Tartaglia was wrong
(you want a launch angle a bit less than 45°)

“Tartaglia’s correct theoretical answer of 45° surprised
the experts; they thought it would be smaller [...] but he
refrained from publication. The reason for his diffidence
is highly creditable: He felt it would be immoral to use
science to help [soliders] slaughter [soliders] more
efficiently”

- So the "experts" were right!



A bomb is dropped from an aeroplane flying horizontally
at a constant speed. Where will the aeroplane be when the bomb
hits the ground?

Shaskol’Skaya & EI'Tsin (1963)



Ex. (SOL
Ex. | ) The plane flies horizontally with constant speed ». The

bomb follows the path of a parabola, since its motion is com-
pounded of horizontal motion with initial velocity » and uni-
formly accelerated vertical fall. If there were no air-resistance,
the bomb’s horizontal velocity would be no different from that of
“the plane, and the plane would be directly above the bomb the
whole time—in particular, when the bomb hits the ground. But
in fact, as a result of air-resistance, the bomb’s horizontal velocity
is decreasing all the time, and so it falls behind the plane (Fig.
163). Therefore the fall to earth and explosion of the bomb take
place not underneath the plane, but considerably behind it.

FIGURE 5.11 Air resistance is an example
of drag.

Air resistance is a significant force

on falling leaves. It points opposite
the direction of motion.

Knight (2013)

Shaskol’Skaya & EI'Tsin (1963)



