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Here are nine matches, which have been arranged on a table
to form a figure which looks like a cube.

Suppose two of the matches were removed. How could you
rearrange the matches that remained so that they still
formed the figure of a cube?
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- HW?2 and rockets!




GOT IT? 5.1 A roofer’s toolbox rests on an essentially
frictionless metal roof with a 45° slope, secured by a horizon-
tal rope as shown. Is the rope tension (a) greater than, (b) less
than, or (c) equal to the box’s weight?

How does the

rope tension compare
with the toolbox
weight?

Wolfson



Ex. (SOL)

GOT IT? 5.1

A roofer’s toolbox rests on an essentially

frictionless metal roof with a 45° slope, secured by a horizon-
tal rope as shown. Is the rope tension (a) greater than, (b) less
than, or (c) equal to the box’s weight?

C

How does the

rope tension compare
with the toolbox
weight?

v

AWAN
45°

— This one is not immediately intuitive per se. It’s generally a good idea to draw a
free-body diagram and set up the appropriate equations

Wolfson



A 73-kg climber finds himself dangling over the edge of an ice cliff,
as shown in Fig. 5.7. Fortunately, he’s roped to a 940-kg rock located
51 m from the edge of the cliff. Unfortunately, the ice is frictionless,
and the climber accelerates downward. What’s his acceleration, and
how much time does he have before the rock goes over the edge?
Neglect the rope’s mass.

....... The rope connects
climber and rock,
so they have the
same acceleration.

FIGURE5.7 A climber in trouble.

Wolfson
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climber:

rock:

climber, y:
rock, x:

rock, y:
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Note: These

= m.d, “vector

equations” are
essentially 2-D

Ir'—msg = —mea - Now broken
T = m.a up into a set(s) of
n—mg=0 1-D eqns.

- This is a good problem to
ensure that the “answer” makes
sense (e.g., what if m,=07?)

Looking further: What if we

hadn’t ignored the rope’s mass?

Wolfson



Looking further: What if we
hadn’t ignored the rope’s mass?

A related problem...

A chain of length x and mass m is hanging over the edge of a tall building and
does not touch the ground. How much work is required to lift the chain to the top
of the building?

To answer this, we’ll need some more pieces:
e Definition of work
* Integration



Spatially-dependent forces = Energy

Let us assume the force depends only upon the "particle's" position (x), not
on velocity or time
(e.g., gravitational and electrostatic forces are canonical examples of this)

Applying the . dx dx dx d‘D

F(x) =mX chain rule (so to == =0
re-express a as):

Out pops kinetic energy!

do m d(v?) _dT

b 2 & dx -T=%mvz

F(x) =mv

X
Rewriting in W=| F(x)dx=T-T, Out pops work!!
"integral form": X0

- Work done is equal to the change in
kinetic energy of the particle

Fowles & Cassidy



Review: Work as an Integral Note: Be careful re the specified units!

(solution below is sloppy!)

A 28-meter uniform chain with a mass 2 kilograms per meter is dangling from the roof of a building.
How much work is needed to pull the chain up onto the top of the building?

- Very useful starting point is to draw a o
diagram and set up the relevant variables! TOp of bU|Id|ng

(2kg)(9.8 m/sec’) = 19.6 newtons. Let’s divide the chain into small sections of length Ay, each
requiring a force of 19.6 Ay newtons to move it against gravity. See Figure 8.61. If Ay is small, all
of this piece is hauled up approximately the same distance, namely y, so

Work done on the small piece ~ (19.6 Ay newtons)(y meters) = 19.6y Ay joules.

@
Since 1 meter of the chain has mass density 2 kg, the gravitational force per meter of chain is g ¥

The work done on the entire chain is given by the total of the work done on each piece:

Work done ~ Z 19.6y Ay joules.

As Ay — 0, we obtain a definite integral. Since ¥ varies from 0 to 28 meters, the total work is

28

= 7683.2 joules.
0

28
Work done =/ (19.6y) dy = 9.8y
0

- Work done is also equal to a change
in potential energy....

Hughes-Hallet et al (2005)



Spatially-dependent forces = Energy

W=[ FGx)dx=T-T,
X0

Let us define a dV(x)

function V(x) = F(x) Weaving in potential energy here....
such that:
Rewriting work in _[* —_[* - T
terms of V(x) : W = on(x)dx-— deV-—- Vix)+V(xy))=T-T,

V) + C1+ V) + C1 ==V + Vi) 15 0 oot

Out pops conservation

of energy'!

Ty+ V(xy) =constant =T+ V(x) = E

Fowles & Cassidy



Spatially-dependent forces = Energy

To+ V(xg) =constant=T + V(x) = E

_dV(x)
dx

Caution: There is a MAJOR catch here though!

= F(x)

Here we assumed the force only depends upon x —

[or put another way, the energy of the "particle" e
can be deduced from some function V(x) that F(x) = mi
describes the "potential"]

- Such is what is called a "conservative" force

However, many forces are non-conservative (e.g., friction, drag) and application of
this "model" is not, umm, valid per se....

— Let us briefly distinguish between conservative and non-conservative
forces to crystallize things further....

Fowles & Cassidy



Conservative Forces

First consider 1-D case:

Recall:  We now restrict ourselves to the special case where the force F' depends
on position only, F = F(z). (In particular, F' is not dependent on time).

The change in the potential energy U(x) over the segment dx
is equal to minus the work done by the force F'.

Equivalently: U(x) = — / F(z)dx

Here, E is just a constant of integration
that depends upon the initial conditions!

Leading backto: T+ U(z) = E.

The total mechanical energy — i.e., the sum of kinetic and
potential energy — for a particle moving in a conservative
force field, is conserved (constant).

Knudsen & Hjorth



Conservative Forces

Generalizing (for a moment) to higher dimensions (e.g., notion of a field):

A force field is called conservative if the force vector F of the field
depends only on the position r of the particle and the work integral
i) f F - dr is independent of the path of integration, depending only
on the initial point A and the final point B, of the path.

A

Fig. 8.2. Defining a conservative force field. The particle is moved from A to B

along the path 1 or along the path 2
Knudsen & Hjorth



Conservative Forces

A

Fig. 8.2. Defining a conservative force field. The particle is moved from A to B
along the path 1 or along the path 2

The condition that the force field is conservative is:

B B
/ F-dr=/ F -dr,
A A

Or more succinctly:

along 1 along 2
_ F.-dr=0.
Equivalently:
B B
/ F . dr - / F.-dr = 0, "This is the most common definition of a
A A conservative force field: The work integral
along 1 along 2 around any closed curve in the field, is zero."

Knudsen & Hjorth



(Non-)Conservative Forces: Intuitive example |
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(Non-)Conservative Forces: Intuitive example Il

Situation here is a bit
more nuanced...

Fig. 2-1 Strobo-
scopic photograph of
a motion. (From
PSSC Physics, D. C.
Heath, Lexington,
Massachusetts, 1965.)

French (1971)



Conservative Forces & Energy

= F(x)

_ dv(x
Let's us return to conservative force Fix)=mX - —(—)
for the moment: dx

[Why? Such will ultimately/directly lead into Lagrangian mechanics downstream...]

"Energy equation”

To+ V(xg) =constant=T + V(x) = E

Solving the energy Note that v is only real

2
equation for v: D=-d—x-=:t\/-—-—[E-V(x)] for V<=E
dt m

dx
Equivalently: J:, 9
+ \/—— [E-V(x)]
m

Fowles & Cassidy



Conservative Forces & Energy

dx 2
v——J;—i\/E[E-V(x)]

Subsequent considerations:
= V(x) defines a potential well

= The "particle" is confined to regions
where V'<=FE

= ypgoestozerowhen V=E - "turning
points" (particle comes to rest and
reverses its motion)

= There will be regions that energetically
are "not allowed"

Allowed
region

Turning points

Figure 2.3.1 Graph of a one-
dimensional potential energy
function V(x) showing the allowed
region of motion and the turning
points for a given value of the total
energy E.

Fowles & Cassidy



Ex. Object in "free fall" due to gravity

Let x be vertical distance (positive when going upwards, away from Earth's surface)

gravity: me. _dV(x) - F(x) — —dV/dx= -mg,

dx
Solving for V, s y Note that Cis an arbitrary const. of integration
one obtains: v mgx +C (and ties back to our reference height). Easiest

to choose C =0 (i.e., =0 when x=0)

Total energy (E) is then determined by the P g -
initial conditions. Consider the object shot E=mvy/2=mv’/2 + mgx,

upwards with initial velocity v,, then:

Rearranging, we obtain the familiar: 1)2 = ‘Dg - ng

2 .
Leading to an expression —x = Vg —> A familiar 1%t year |cl>lroblem. recast”
for the "turning point": max 2g through the lens of a "potential well

Fowles & Cassidy



Ex. Vibrating diatomic molecule

potential energy of a vibrating diatomic
molecule as a function of x (the separation
distance between the two atoms)

The Morse function approximates the V(x) — Vo[l _ e-(x—xo)16]2 B Vo

Note: The three arbitrary constants can be
tailored for a particular atomic pair

One constant in particular (x,) is _ dV(x) =F(x) Igt us determine where F'is at
relevant here.... dx a minimum

_ dV(x) 0 VO —(x—x0)/6 —(x—x)/8\ _
Fr)=-— ~=0= 2?(1-e )(e )_0

l—g g  —— In(l)=—(x—x)/8=0 X =g

Leading to:  Vi(xg) ==V,

Fowles & Cassidy



Ex. Vibrating diatomic molecule

V(x) =V, [1 - e‘(x-xo)/«slz _v,

V(x)
Vixe) =-V,
%0
—
- This is the equilibrium condition ' e
for the molecule.... E 1
|
.... but what is the associated |
stability? Vo ———

That is, what happens if the system is perturbed and the separation
moves slightly away from x, (i.e., for small [x- x, [)?

Given the exponential function, a >,k x x x
. . : expx : E

simple Taylor series expansion

should do the trick....

Fowles & Cassidy



Ex. Vibrating diatomic molecule

V(x) =V, [1 - e‘(x-xo)/«slz _v,

V(x)
0k 2 3 4
eXP$:k=OE:1+$+ +6+24+'-
2
X—X
o
_VO I
\%
= s—g(x - x0)2 - VO A quadratic!
And the associated force: A linear function (of x). And a
restorative one too (i.e., F always
F(x) dV(x) 2V, ( ) points back towards x,)
)=————=—-—(x—-x
dx 52 0

Note: We could readily carry our analysis out
further (e.g., estimate the "binding energy")

Fowles & Cassidy



Ex. Vibrating diatomic molecule

dv(z) __ 2V,

= =%

— Directly connects back to a familiar problem!

... and hence the "vibrating" molecule

R
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We will return to the HO in quite some detail soon....



Caveat (re the "Vibrating diatomic molecule")

Speed of ik b vl - An example of an
€
Light Relativistic i Relativisti . . .
Quantum o R application of classical
Mechanics . .
- Bl mechanics applied to
10
systems that aren't really
1 H [
Speed ? Quantum Classical Cosmological CIaSSICaI PEr Se...
Mechanics b hoviic OB (see also Lord Rayleigh and
elastic scattering re "Why is
0 T 10- m 10 m the sky blue?")
0 Nucleus Atom Galaxy
Size French (1971)
V(x) /
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