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Here’s a more serious, practical math/physics question for you to ponder.
If you are making a round-trip flight from A to B and then back to A, does a
steady wind blowing from A to B increase, decrease, or leave unchanged, the
total travel time compared with when no wind is blowing? Don’t guess—make a
mathematical analysis (it’s just high school algebra).

Nahin (2016)



Projectiles are hurled at a horizontal distance R from the edge of a cliff of height
k in such a way as to land a horizontal distance z from the bottom of the cliff. If yoy
want z to be as small as possible, how would you adjust 6o and v, assuming that v, can
be varied from zero to some maximum finite value and that 8¢ can be varied continu-
ously? Only one collision with the ground is allowed (see Fig. 4-14).

e R RN

Fig. 4-14

Resnick & Halliday (1968)



Ex. Vibrating diatomic molecule "Morse Function"

V(x)= Vo[l — g ~(x"x0)0 ]2 -V,

V(x)
dV(x 2V,

Fw=-S2 =20 (-x,)

—> Directly connects back to

a familiar problem....
/ _VO e — —
? K ... and hence the
/ m - vibrating" molecule




Caveat (re the "Vibrating diatomic molecule")
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Looking Ahead....

Soon we will start digging our heels into this key 1-D
problem and develop a wide array of tools for our
toolbox....

ANRNNRRNY

.... but first let us wrap up some loose ends (projectile motion in higher
dimensions w/ drag) so to set the stage for later topics/approaches)



Recall: Projectile Motion 2) Vector calculation

2 de ., .
r(t) = ibt +j at—gt7 +kO v=—-=ib+jlc-gt)
s dv
dr %
V= dar _ kgt +v
dt 0
Note the (slight) change in ’
coord system as assumed
at start of lecture!
2 21172
v=[b"+(c—-gt)’]
0 X

Fowles & Cassidy



Recall (re Projectile Motion)

2
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X = —sin 26, (horizontal range)
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Non-conservative Forces




Non-conservative Forces

Before considering higher dimensional descriptions, let's consider 1-D forces that
depend upon velocity....

. . m
Recall re drag and terminal velocity: v = TQ (1 — e—kt/m)
Air resistance 1s a significant force Note: A heavier object
on falling leaves. It points opposite does fall faster!

the direction of motion.

Air resistance, kv

Force due to
gravity, mg

\i

Figure 11.44: Forces acting on a falling object

Knight (2013)



If | drop a bowling ball, a spoon, and a book at the same time from
the same height, do they fall at the same rate?

If you ask people around you, what will they say? I bet the
will say one of the following answers:

e Heaver objects fall faster. If you drop a heavy and light
object together, the heavy one will get to the ground first.

e This 1s trick question. I remember 1n physics that
everything falls the same. You can’t trick me twice.

https://www.wired.com/2013/10/do-heavier-objects-really-fall-faster/



Non-conservative Forces

Before considering higher dimensional descriptions, let's consider 1-D forces that
depend upon velocity....

. . m
Recall re drag and terminal velocity: v = TQ (1 — e—kt/m)
Air resistance 1s a significant force Note: A heavier object
on falling leaves. It points opposite does fall faster!

the direction of motion.

Air resistance, kv

Force due to
gravity, mg

\i

Figure 11.44: Forces acting on a falling object

Knight (2013)
dv
F,+F(v)=m—
0 (v)=m at
— Let us return to such w/ an added degree of formalism F, +F(U)=”w@

dx



Ex. 1-D Linear drag (no gravity) Note: These cases give us a chance
to highlight/practice solving ODEs

Consider:  —C. = mé}_)_ For example, this might be a block launched along a
' 1 dt horizontal surface with velocity v, some "air resistance"

Now we use separation of variables
and integrate to solve for ¢:

Fowles & Cassidy



Aside: Separation of Variables

Consider: dy 4

de vy’

The method of separation of variables works by putting all the z-values on one side of
the equation and all the y-values on the other, giving

ydy = —xdzx.

We then integrate each side separately:

/ydyz—/xda},

Hughes-Hallet et al



Aside: Separation of Variables = "Justification"

Suppose a differential equation can be written in the form

dy
Y — 9@ )
Provided f(y) # 0, we write f(y) = 1/h(y), so the right-hand side can be thought of as a fraction,

dy _ g(a)
dz  h(y)

If we multiply through by h(y), we get
dy
h(y)—= = !
) o = 9(z)

Thinking of y as a function of z, so y = y(z), and dy/dz = y'(z), we can rewrite the equation as

h(y(x)) - y'(z) = g().

Now integrate both sides with respect to x:

[1t6@) - v@ s = [ glo) .

The form of the integral on the left suggests that we use the substitution y = y(x). Since dy = y'(x) dz,

we get
/ h(y) dy = / 9(z) dz.

If we can find antiderivatives of h and g, then this gives the equation of the solution curve.
Note that transforming the original differential equation,

dy _ 9(z)
dz  h(y)’

/ h(y) dy = / 9(z) dz

looks as though we have treated dy /dx as a fraction, cross-multiplied, and then integrated. Although
that’s not exactly what we have done, you may find this a helpful way of remembering the method.
In fact, the dy/dz notation was introduced by Leibniz to allow shortcuts like this (more specifically,
to make the chain rule look like cancellation).

into

Hughes-Hallet et al



Ex. 1-D Linear drag (no gravity) Note: These cases give us a chance

to highlight/practice solving ODEs

Consider:  —C. = mé-?- For example, this might be a block launched along a

' 1 dt horizontal surface with velocity v, some "air resistance"
Now we use separation of variables _ J‘v mdv . m In v
and integrate to solve for ¢: % Cv ¢, o

Note that if we hadn't neglected gravity (i.e., a
constant in the ODE), things wouldn't be too

different... B mg (1 ) —kt/m)
YTk

Rearranging and
solving for v:

Block asymptotically

Integratin d —cy i/ mu, —cytim
_g- 5 x= J- Uy€ e (I-e ™) approaches a limiting
again: 0 ¢, e

Xlim = MOL/C.

Fowles & Cassidy



Ex. 1-D Quadratic drag (no gravity)

dv

Now.we have a _0202 = m —
nonlinear drag: dt
Again, separation of variables and J‘v -mdv 1 1
integrate to solve for t: = P

& o0 Co0° c2 v U,
R ' v

cartansing and = —2 where k= cgvp/m.

solving for v: 1+ kt

_ di = Interestingly, the block never
Inte_gltatlng x(t) = J' Yo 00 In(1+kt) stops moving in this case(!?!)
again: 01+ kt k

Good rule-of-thumb: Nonlinear things
are commonly weird/unintuitive!

Fowles & Cassidy



Ex. 1-D Quadratic drag (w/ gravity)
Let x be vertical distance (positive when going upwards, away from Earth's surface)

For simplicity, assume the object is either

dropped or thrown downwards: dv 1 2
(otherwise we need to be more crafty with the sign d Tn’g 02‘0 "Lg - v
of the drag term due to the squaring!) t mg

2
Simplifying a bit: dv =g ]___P___ where v, = mg
dt 02 Co
Now we are getting into trickier N dv _ 1 U -1
ODEs to deal w/ solving.... — Y0 _,[,0 02 = 7| tanh v_ tanh o
(a "Table of Integrals" helps!!) g 1- 5 ‘ ¢
Uy
v, m
where T=—"= |—
g C28

Fowles & Cassidy



Ex. 1-D Quadratic drag (w/ gravity)

t—ty = r do ] = T(tanh'l 2 —tanh™ &]

Yo 1)2 v, U,
g(l— —
U,
t =1 -1 Yy Note: A bit hairy! i
) _ — . o : y! (a hyperbolic tangent
Solving forv: U Uttanh T tanh v, of an inverse hyperbolic tangent!)
Now if the ball is dropped
at =0 (i.e., v,=0): 1.0
v=v,tanh— = v, — | |
T e +1 Linear resistance

Quadratic resistance

Speed (v/vy)
o
ta
|

So the qualitative picture has
not drastically changed...

Here the object reaches its terminal | | :
velocity relatively quicker.... 0 1 ) 3 4

Time (#/1)

.... and a heavier object still falls faster!
Fowles & Cassidy



Looking Ahead: Higher Dimensions & Projectile Motion

No drag case was relatively straightforward...

y (m)
e

1 I I | I 1
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x (m)

Niccolo Tartaglia (1499-1557)

1-D nonlinear drag case less so....
dU 92 C 9
m—=mg—c,0° =mg|1-—2v
dt mg
Baseball trajectories
80 dra
N E We might expect
el the 2-D case to be
Bl even "messier"!
e quadratic drag
20 +
: = ; A— x(m)
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Fowles & Cassidy



Projectile Motion w/ Drag: Higher Dimensions

Baseball trajectories

Height (m)

+— x(m)
100 200 300 400

—
——
e

Fowles & Cassidy

—> Before delving into this (non-conservative) problem, let's return
to motion in higher dimensions by virtue of conservative forces....



Force & Work: Higher Dimensions

Recall: Workin1-0 W= [ Fx)dx=—[ dV =-V(@)+V(x)=T-T,
0 0

Note: In many

Force in 2-D F = dp Force in 2-D .F; = mx "real world" cases,
(Vector form) - dt (Scalar/component F _ m.. the§e eqgns. are
form in Cartesian y — Y typically too
" complex to solve
Coords) Fz = mz analytically
Let us assume mass is a constant and that First take dot dp d(mv)
F does not explicitly depend upon time product w/ v: V= E V= T "V

Now (via chain rule): Note: Here we

d(v-v)dt =2v-v took a derivative
of a dot product

Fowles & Cassidy



Review: Derivative of Vectors |

Starting point: A generic vector A A(uw) = iAx(u) +jA (u) + kAz (u)
(in Cartesian coords here) y

Derivative re a scalar: ié. = lim ﬁ = im iAAx + _l AA!/ +k AAz
(by definition) du -0 Ay M—0\  Au Au

AA,=A,(u+ Au)—A,(u) and so on.

Or more dA 4 dA, .3 dAy +dez ...and on
compactly: - du 3 du du d(nA) dnA+ A
du  du du
d(A-B) dA dB
Carrying on... Zdu-(A+B)=(ciiA+ccliB (du - du.B+A.d_u-
u u
dAxB) _dA o . dB
du du du

Fowles & Cassidy



Force & Work: Higher Dimensions

Recall: Workin1-0 W= [ Fx)dx=—[ dV =-V(@)+V(x)=T-T,
0 0

Note: In many

Force in 2-D F = dp Force in 2-D Ex = mx "real world" cases,
(Vector form) - dt (Scalar/component F _ m.. the§e eqgns. are
form in Cartesian y — Y typically too
" complex to solve
Coords) Fz =mz analytically

Let us assume mass is a constant and that First take dot dp d(mv)

F does not explicitly depend upon time product w/ v: 'V=E'V=T‘V
Now (via chain rule): Note: Here we . F.v=_d_(lmv.v)_—_d_T
d(v . V)/dt =9v.v took a derivative dt \? dt

of a dot product
dr dT
Or: Fe—e=—
dt dt

Arriving back at the familiar

JF dr =IdT = Tf - Tz = AT (now in vector form) work-

energy theorem

Fowles & Cassidy



Force & Work: Higher Dimensions

J'F dr =de _ Tf _ T; = AT Left-hand term is a

line integral...

"The line integral represents the work done

on the particle by the force F as the particle
moves along its trajectory from A to B. The
right-hand side of the equation is the net
change in the kinetic energy of the particle.

F is the net sum of all vector forces acting

on the particle; hence, the equation states A
that the work done on a particle by the net

force acting on it, in moving from one
position in space to another, is equal to the ~ Figure 4.1.1 The work done by a force F is the

. B
difference in the kinetic energy of the line integral JAF . dr.
particle at those two positions."

- Clearly, as we (eventually) move into higher dimensions,
vector calculus is going to come into play!

Fowles & Cassidy



Review: 1-D Conservative Force Fields

Recall some basics relating (conservative) forces and
energy in 1-D that we previously derived:

F(x) =mx Roping in energy:

Here we just needed F to depend
upon x only (not v, ¢, etc...)

F(x) =mo

Putting the pieces together:

W = :OF(x)dx = -j:o dV =-V(x)+V(x,) =T-T,

Or more succinctly: Jdex =J—AV= V(A)-V(B)

E,,, = V(A) + T(A) = V(B) + T(B) = constant

So we needed to be able to
find that potential energy

function
dv _m d(v?) _ Elz
de 2 dx dx

Put another way, for the
conservative force, the "path”
does not matter, only the end
points (4 and B)

Fowles & Cassidy



STOPTO THINK'10.2° A gsmall child slides
down the four frictionless slides a—d. Each
has the same height. Rank in order, from
largest to smallest, her speeds v, to v, at the
bottom.

h

DN

Knight (2013)



STOP TO THINK'10.2 = A gmall child slides | .
down the four frictionless slides a—d. Each . \\\\\\\\
has the same height. Rank in order, from
largest to smallest, her speeds v, to vgatthe |
a b C d

bottom.

All the same

But be careful re what you are being asked!

What if we were asked to rank re how long it took to get to the bottom?

Knight (2013)



Conservative Forces = Scaling Up to Higher Dimensions

For 1-D it was sufficient to state:

We now restrict ourselves to the special case where the force F' depends
on position only, F' = F(z). (In particular, F' is not dependent on time).

And indeed we did go a bit further (re higher dimensions):

A force field is called conservative if the force vector F of the field
depends only on the position r of the particle and the work integral
i) /}\3 F - dr is independent of the path of integration, depending only
on the initial point A and the final point B, of the path.

1
B
— Can we firm this up,
. f\ F.-dr=0. so to have a clearer
picture as to whether a
A N

H nge: n H
Fig. 8.2. Deﬁning alconse;"vativeilfgrce field. The particle is moved from A to B glve n force fle,d IS In
along the path 1 or along the pat .
B s fact conservative or not?

Just as we constrained ourselves to 1-D earlier, let us generalize our
"higher dimensional" argument to focus on 2-D for clarity...

Knudsen & Hjorth





