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/ 228. Ten-{ube Ring \

- R

Which view of 10 cubes in a ring does not
match the other three?




"Separable" Forces

Definition: ~ F=1F,(x) + jF,(y) + kF,(z)
i j  k
Note this useful property: Y X F =| d/dx a/ay dloz =0

(useful exercise to do on the back

P— x(m)

f lope!
of an envelope!) Fx (x) Fy(y) Fz(z)
Fx = Now if Fy= F(X), F'y= Fy(y), etc..., then these
F = my can be dealt with relatively straightforwardly
Y
— '?1 z" Baseball trajectories
Fz B 0T no drag
Sl
But ones of this flavor are . . ] quadratic drag
. . mi=F (x,x,t
typically a bit more common.... ‘( x,1)
™ w0 w0 aw

Fowles & Cassidy



Review: Uniform Gravitational Field z A

Newton's Law of

Gravitation:
(magnitude only)

Mm

r2

F=¢G

AL
Fig. 3.3.

where: G = 6.67 x 10711 Nm? kg"2

Note

Our knowledge of the masses of the objects in the solar system rests entirely
on the determination of G. A

Knudsen & Hjorth



Review: Uniform Gravitational Field

(@) (b)

FIGURE 8.14 Gravitational field vectors at points (a) near Earth’s surface and (b) on a larger scale.

gr’ = — g} (gravitational field near Earth’s surface)
= GM . .. .
§=——T (gravitational field of a spherical mass M )
e

Exercise: Compute the condition re Newton's LoG for "close to Earth's surface" such
that F can be considered approximately "constant"”. By what order of magnitude is
that in error for something falling 1 m?

Wolfson (2012)



Projectile Motion: Conservative Gravitational Field + Non-conservative Drag

Air resistance is a significant force
on falling leaves. It points opposite
the direction of motion.

Knight (2013)



Recall: Higher Dimensions & Projectile Motion

No drag case was relatively straightforward...

Niccolo Tartaglia (1499-1557)

1-D nonlinear drag case less so....

1204
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mf—éj-:fng-—czv2 =mg I—Zg—ivz

Baseball trajectories
80 + i
no .

& We might expect
el the 2-D case to be
Bl even "messier"!
es) quadratic drag

20 +
: % : R— x(m)
100 200 300 400

Fowles & Cassidy



Recall: Projectile Motion 2) Vector calculation (No Drag)

2 de ., .
r(t) = ibt +j at—gt7 +kO v=—-=ib+jlc-gt)
s dv
dr %
V= dar _ kgt +v
dt 0
Note the (slight) change in ’
coord system as assumed
at start of lecture!
2 21172
v=[b"+(c—-gt)’]
0 X

Fowles & Cassidy



Revisiting Projectile Motion: No Air Resistance

Integrate to yield:

Egn. of motion
d’r L V= fl: =—kgt +v,
dt2 - mg

Or in component form:
v =iv, cos o + k (v, sina — gt)

rd

E

:

: =-kigt®+v t+

: r= -2"gt V0 rO
E r =i(y, cosa)t+k((vo sina)¢ “%gtz)

And the expected bits fall right out....

X
x = %yt = (v, cos )t t= W (e.g., parabolas!)
Y=yt =0 g .
2= 2t — > gt® = (v, sin )t — 5 gt z = (tanor)x - 202 cos’a x

Fowles & Cassidy



Revisiting Projectile Motion: No Air Resistance

And the expected bits fall right out....

Max height: Time to max height: "Range":
vg sin’a p = DoSINA vg sin® 20
Pmar = max g R=x=

R has its maximum value R, = vg/g at o= 45°.

75°
100
60°
80
E  60- 45°
=
40—' 300
A 15°
0

I I I | I |
0 50 100 150 200 250 300
Wolfson x (m)

Fowles & Cassidy



Connecting back to 15t year physics....

So this compact expression....
d’r =-kmg
dt®

. implicitly contains all these parts!

FIGURE 4.14 A projectile launched with
initial velocity v,.

AN Parabolic
S trajecto
\ ¥ 1Lk

Knight

—>

F

FIGURE 4.15 The velocity
acceleration vectors of ¢
moving along a parabol

Vg
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Velocity vectors are
shown every 1 s.
Values are in m/s.

.het -

Net force: the vector
sum of all real,
physical forces
acting on an object

Product of object’s mass
and its acceleration;
not a force,,

“
-

ma

Equal sign indicates that
the two sides are
mathematically equal —
but that doesn’t mean
they’re the same _
physically. Only F,,
involves physical forces.
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Revisiting Projectile Motion: Linear Air Resistance

2. Orin X =—yx
Eqgn. of motion: m-d—2 =-myv-kmg component i = —yy
¢ form: . .
Z=—yz—g
e N X -
And we have already X =ZXg€ x=-2(1-¢7")
seen how to deal with g = goe-rt

(i.e., integrate):

% 8 \q_.,m_8
2=206_w—%(1—6_w) z—(7+72](1 ¢”) yt

can happen with even linear drag...
vector form: :
(e.g., x asymptotically approaches a
limiting value, but never quite gets
there)

C And don't forget the odd things that
I A4 -
Solution in r-—( Yo . )(1 ey — kgt

Fowles & Cassidy



Revisiting Projectile Motion: Linear Air Resistance

—— e — — — e — — — — i — o—
-

|

Figure 2.7 The trajectory of a projectile subject to a linear drag
force (solid curve) and the corresponding trajectory in a vacuum
(dashed curve). At first the two curves are very similar, but as ¢
increases, air resistance slows the projectile and pulls its trajec-
tory down, with a vertical asymptote at x = v, 7. The horizontal
range of the projectile is labeled R, and the corresponding range

in vacuum R,,..

Taylor (2005)



Revisiting Projectile Motion: Linear Air Resistance — %o (1-¢e")

Rearranging the
equation for x to get ¢ :

t = -y~ In(1 - yx/,)

To get the horizontal range ;

. 5 - 5 R g | YXmax g Inl 1- Y X max =0

(i.e., xpmux), S€tz =0 and plug +—= —t+t— —_— | =

in that value for . v 7 %o Y %o

. . _ -z

- Transcendental equation for x,, ! Aside: T =€
(i.e., the equation contains the variable being solved for; T = COSXT
sometimes they are solvable, sometimes they are not...) 9T _ :172

Using the following series In(1 _ u
. . . - Im(l-u)=-u—-————7—---
expansion, this one is solvable: 9 3
_ 2&y%, 8y
X max - 3 2 y+-
g g

Fowles & Cassidy



Revisiting Projectile Motion: Linear Air Resistance

_ vg sin20  4vj sin2¢ sino

p 3g2 Y+

xmm

Note that the first term is the range in
the absence of drag, the higher order
terms capturing the decrease due to air
resistance

Rvac

VyoT \\’// X

- ————— - - = = e w w s 0]

Fowles & Cassidy



Revisiting Projectile Motion: Quadratic Drag

Note: There is a duality here. On one
hand, this is a gross oversimplification
(for what drag forces an object will
experience). But on the other, the
nonlinear nature of things greatly
complicates analysis....

Assume drag force goes

as square of velocity: Fp(v) =—cz|v| v

Egn. of motion: mi = —Cy |0| v—mgk

In component mi = —c, |v| %

: . . Let: ‘}'=02/m:
form: mz = —c, |v| 2—mg

— Set of coupled nonlinear ODEs. Not

Leaving us to deal with: possible(?) to solve analytically in closed

. o . . form.....

¥=—y@® + %)%

- .2 . .2.12. . .

zZ = "'}’(x +2°) " z— g ... S0 one possible strategy might be to

examine from a numerical approach

Fowles & Cassidy



S ### EXprojectile.m ### 2020.01.28 C. Bergevin

% [REF: ex.4.3.2 from Fowles & Cassidy 2005]

% Purpose: Solve/plot 2-D projectile motion for spherical object w/ (optional)
$ quadratic drag (x is horiz. position, z vert. pos.)

% —--—-- Notes

$ o v0= 143.2 mph ~ 64 m/s

clear

Y

P.g= 9.8; % grav. const. [m"2/s] {9.8}

P.drag= 0; % boolean to incl. drag: 0=no drag, l=drag {1}

P.v0= 64; ¢ launch velocity [m/s] {64}

P.theta= 39; % launch angle [degrees] {45}

P.D= 0.073; % diameter of object [m] {0.073}

P.m= 0.145; % mass of object [kg] {0.145}

P.coord0= [0 0]; % initial [x z] coords [m] {[0 O]}

P.tLim= [0 10]; % time limits of integration [s]

P.tRez= 300; $ # of (interp.) time points for integration interval {3002}

oe

oe

--- derived params.

if (P.drag==0), P.gamma= 0; % determine assoc. const. from input params.

else P.gamma= 0.15*P.D"2/P.m; end

P.theta= pi*P.theta/180; % convert launch angle to rads

P.y0(l)= P.coordO(l); P.y0(3)= P.coord0(2); % initial horiz. and vert. positions
P.y0(2)= P.vO0*cos(P.theta); % initial horiz. velocity

P.y0(4)= P.vO0*sin(P.theta); % initial vert. velocity

$ —--- use built-in solver ode45 to numerically integrate

[t vals] = oded45('PROJECTILEfunction',linspace(P.tLim(1l),P.tLim(2),P.tRez),P.y0,[]1,P);
$ —--- kludge: find when object hits the ground (and indicate if it hasn't)

indxG= find(vals(:,3)<0,1); flag= 0;

if (isempty(indxG)), disp('Longer int. time needed (to hit ground)'); indxG=size(vals,l);

indxH= find(vals(:,4)<0,1); % index where velocity flips sign
$ --- rename vars. (excluding those in the ground!)

x= vals(l:indxG,1l); xdot= vals(l:indxG,2);

z= vals(l:indxG,3); zdot= vals(l:indxG,4);

$ --- spit back a few vals. to screen

if (flag==0), disp([ 'total flight time= ',num2str(t(indxG)),"' s']);
disp([ 'horizontal dist. covered= ',num2str(x(indxG)),' m']);
disp([ 'max. vert. height= ',num2str(z(indxH)),"' m']); end

$ --—- visualize

figure(l); clf; hl= plot(x,z, ' 'k-', 'LineWidth',1); hold on; grid on;
xlabel('x [m]'); vylabel('z [m]');

EXprojectile.m

flag=1l; end



PROJECTILEfunction.m

function [outl] = PROJECTILEfunction(t,y,flag,P)

o 2-D equations for projectile motion (see ex.4.3.2 from Fowles & Cassidy 2005)
o x is the horizontal position, z the vertical position
[see XX.m for further notes]

oo

oo

o% o©

y(l) ... horiz. position x
% v(2) ... horiz. velocity dx/dt
% y(3) ... vert. position z

oo

y(4) ... vert. velocity dz/dt

outl(l)= y(2); % --> integrates to x(t)

outl(2)= -P.gamma* sqrt(y(2)°2 + y(4)"2)*y(2); % --> integrates to dx/dt(t)
outl(3)= y(4); &% --> integrates to z(t)

outl(4)= -P.gamma* sqrt(y(2)”"2 + y(4)"2)*y(4)- P.g; % --> integrates to dz/dt(t)
outl= outl'; % wants output as a column vector



EXprojectile.m

90 T T T T T T T T
- = w/ quad. drag
— 0 drag
80 [ ]
70 | -
V0= 64; % launch velocity [m/s] {64}
.theta= 39; % launch angle [degrees] {45}
60 - .D= 0.073; % diameter of object [m] {0.073}

.m= 0.145; % mass of object [kg] {0.145}
.coordd= [0 @]; % initial [x z] coords [m] {[0 0]}

T U U U DO

50

Z [m]

40

30

20

10

0 50 100 150 200 250 300 350 400 450
X [m]

w/ drag No drag

total flight time= 6.2542 s total flight time= 8.2274 s
horizontal dist. covered= 172.1954 m horizontal dist. covered= 409.2102 m
max. vert. height= 48.5492 m max. vert. height= 82.7651 m



EXprojectileMOD.m

$ ### EXprojectileMOD.m ### 2020.01.28 C. Bergevin

clear

S

P.thetaA= linspace(35,55,21); % launch angle [degrees] {45}
P.g= 9.8; % grav. const. [m"2/s] {9.8}

P.drag= 1; % boolean to incl. drag: 0=no drag, l=drag {1}
P.v0= 64; ¢ launch velocity [m/s] {64}

$P.theta= 39; % launch angle [degrees] {45}

P.D= 0.073; % diameter of object [m] {0.073}

P.m= 0.145; % mass of object [kg] {0.145}

P.coord0= [0 0]; % initial [x z] coords [m] {[0 O]}

P.tLim= [0 15]; % time limits of integration [s]

P.tRez= 300; $ # of (interp.) time points for integration interval {3002}

oe

oe

--- derived params.

if (P.drag==0), P.gamma= 0; % determine assoc. const. from input params.

else P.gamma= 0.15*P.D"2/P.m; end

P.y0(l)= P.coordO(l); P.y0(3)= P.coord0(2); % initial horiz. and vert. positions
$ —-—- set up fig. plus color-coding scheme

colormap(jet(numel(P.thetald)))
jetcustom = jet(numel(P.thetad));
figure(l); clf; hold on; grid on;

9 -

for nn=l:numel(P.thetaA)
P.theta= P.thetaA(nn);

P.theta= pi*P.theta/180; % convert launch angle to rads

P.y0(2)= P.vO0*cos(P.theta); % initial horiz. velocity

P.y0(4)= P.vO*sin(P.theta); % initial vert. velocity

$ —---— use built-in solver ode45 to numerically integrate

[t vals] = oded45('PROJECTILEfunction',linspace(P.tLim(1l),P.tLim(2),P.tRez),P.y0,[]1,P);
indxG= find(vals(:,3)<0,1); % find when object hits the ground

$ --- rename vars. (excluding those in the ground!) & plot

x= vals(l:indxG,1l); xdot= vals(l:indxG,2);
z= vals(l:indxG,3); zdot= vals(l:indxG,4);
plot(x,z,"'-', 'LineWidth',1, 'Color',jetcustom(nn,:));
end
xlabel('x [m]'); vylabel('z [m]');
hC=colorbar; caxis([min(P.thetaA) max(P.thetaldA)]);
ylabel (hC, 'Launch angle [deg]')
title('Projectile range w/ quadratic drag for multiple launch angles')



EXprojectileMOD.m

P.thetaA= linspace(55,35,21); % launch angle [degrees]

gt - Projectile range w/ quadratic drag for multiple launch angles -
50
k4
S,
o
o
45 S
N
[&]
5
«
i |
40
_1 0 | | | | | | | | | 35
0 20 40 60 80 100 120 140 160 180

X [m]



EXprojectileMOD.m

P.thetaA= linspace(55,35,21); % launch angle [degrees]

Projectile range w/ quadratic drag for multiple launch angles

12 \ >
10
8 50
6_
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E 4 45 £
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P.thetaA= linspace(36,42,21); % launch angle [degrees]

60

Projectile range w/ quadratic drag for multiple launch angles

20 40 60 80 100 120 140 160 180
X [m]

42

41

40

39

38

37

36

EXprojectileMOD.m

Launch angle [deg]



P.thetaA= linspace(36,42,21); % launch angle [degrees]

Projectile range w/ quadratic drag for multiple launch angles

0.45
0.4 !
0.35
0.3 ,
T 0.25 \
N
0.2 ;
0.15 ‘
0.1 -\
0.05
0 |
| | | | | I

170.8 171 171.2 171.4 171.6 171.8 172
x [m]

T

Ballpark 38-39° seems the optimal angle in this particular case....

42
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EXprojectileMOD.m

Launch angle [deg]



Recall

Baseball trajectories

80 -

3

Height (m)

¢ 1 x(m)
100 200 300 400
Fowles & Cassidy

]
I

Short version: In the "real world", Tartaglia was wrong
(you want a launch angle a bit less than 45°) 0 W

Launch angle [deg]

“Tartaglia’s correct theoretical answer of 45° surprised
the experts; they thought it would be smaller [...] but he
refrained from publication. The reason for his diffidence
is highly creditable: He felt it would be immoral to use y
science to help [soliders] slaughter [soliders] more

efficiently” - So the "experts" were right!

1708 m 1712 1714 1716 1718 172

x[m]



Recall: Nonconservative Force Fields

Assume F' is NOT conservative = There is no potential function V' =2

F’ . dr is not an exact differential
But what is conservative (F) and non-conservative forces (F') are both at play?

Work done over an increment is:  (F + F).dr==dV+F .dr=dT

Work-energy theorem becomes: LBF'-dr =A(T+V)=AE

— So total energy is not constant, but increases or decreases depending upon F'

Largely in part due to the

Note: If the force is dissipative F.dr <0 fact that F' would have to be
(e.g., drag, air resistance), then: opposite the direction of
motion!

Fowles & Cassidy



Energy-based Arguements re Nonconservative Force Fields....

F=-VV

mi =—c, |v| v—mgk F’ . dr is not an exact differential

(F-_l-F')-dr=—dV+F'- dr=dT

B
4
[ F'+dr=A(T+V)=AE Basehall rajectoies
80 +
no drag
£
=
5 40
— Leads to a reasonable
guestion: Is an energy-based 20 1
approach any better/worse
T } ¢ = x(m)
here?
100 200 300 400

Fowles & Cassidy



Moving along....

£

NN

chirp chirp

Pulkki & Karjalainen (2015)
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What is sound?

- Note the periodic nature present....

Pulkki & Karjalainen (2015)



Why does the sound in a hall filled with people sound
deader than in the same hall empty?

Shaskol’Skaya & EI'Tsin (1963)



What is sound? (REVISITED)

-
- - o

- -
- -

early reflections

direct path

o

.

LX)
>

&

— The notion of acoustics deals not just with oscillations, but waves as well....

Pulkki & Karjalainen (2015)




Things that oscillate....
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Things that oscillate....

FIGURE 2. BACTERIAL
MOTOR AND DRIVE
TRAIN. (a) Rotationally
averaged reconstruc-
tion of electron micro-
graphs of purified
hook-basal bodies. The
rings seen in the image
and labeled in the
schematic diagram (b)
are the L ring, P ring,
MS ring, and C ring.
(Digital print courtesy
of David DeRosier,
Brandeis University.)

T - -

: = | TR
ﬁ: 5 i-nmmm
MotB

4 Qﬁ Mot (Stator)

(Cap) FliD

FIhA,B FIiH,LO,P,Q,R
(Transport apparatus)

45 nm

Berg (2000)



Note: This is a 3-D plot!

Aside: Bacterial motility (try crossing your eyes)
¢
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FIGURE 3. MOVEMENT. This stereo plot shows about 30 s in
the life of one Escherichia coli K-12 bacterium swimming in an
isotropic homogenous medium.’”® The track spans about 0.1
mm, left to right. The plot shows 26 runs and tumbles, the
longest run (nearly vertical) lasting 3.6 s. The mean speed is
about 21 um/s. To see this plot in three dimensions, look at
the left image with your left eye and the right image with your
right eye, and relax your eye muscles so that the two images
overlap. A stereoscope (pair of lenses) helps.

Berg (2000)



Tangent...

Question:
What differences are there for micro- vs. macro-scopic motors?

2

— Y

;L%
4 =
\

e’
—

|

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976) )
American Journal of Physics, Vol. 45, No. 1, January 1977

But I want to take you into the
world of very low Reynolds number—a world which is in-
habited by the overwhelming majority of the organisms in
this room. This world is quite different from the one that
we have developed our intuitions in.

Note: Purcell (1912-1997) won
the 1952 Nobel Prize for his
work on NMR



Wikipedia



Things that oscillate....

Fig, 3.147a-d. Classical representation of t&:
NMR experiment. a In equilibrium the nucle=
spins are distributed in the states z and f§§ accorc
ing to the Boltzmann distribution, b At resonanc:
and with a sufficiently strong RF field, the popul:
tions of 2 and ff are equalized and the spins prece:
in phase at the Larmor frequency w,. ¢ Long-
tudinal relaxation restores the equilibrium dist—
bution of the spins. d The phase coherence of 17
spins is lost by transverse relaxation. In reality t™
processes ¢ and d proceed simultaneously

Hoppe



Recall (re the "Vibrating diatomic molecule")

Unphysical Domain ? ?
y SPL‘?e:t“ - An example of an
ig Relativistic - ivisti . . .
Quantum jmaing jorabe application of classical
Mechanics . .
- Bl mechanics applied to
10
systems that aren't really
1 H [
Speed ? Quantum Classical Cosmological CIaSSICaI PEr SE...
Mechanics Mecharics iy (see also Lord Rayleigh and
: elastic scattering re "Why is
g 10-m 10-°m 10% m the sky blue?")
0 Nucleus Atom Galaxy
Size French (1971)
V(x)

xo :v_

\\\%\\\\
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Speed of Unphysical Domain ? ?
€ . T
o Relativistic Relativity Relativistic
Quantum Physics Cosmology
Mechanics
o0 s 2
10
Speed Quantum Classical Cosmological
Mechanics Mechanics Physics
0 - 0
107"*m 107"m 10*m
0 Nucleus Atom Galaxy
——————
Size French (1971)
M.

Resonance

AN

NMR and MRI is another

example along these lines....
(that also happens to tie right back to
the harmonic oscillator...)

Bloch equations

dM. M S 5
© — _Z2 (M x B),,
% T +7(M x B)
dM, My .o =
- WL (MxB
dM, 1 -
= —(My— M, M x B),




Harmonic oscillator

“mass-on-a-spring”

<

ANRNNNRNY

> One of the more fundamental/canonical problems in all areas of physics...



