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Looking Ahead....
Damped HO (DHO)

4 Time Waveform
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> The steady-state response of the sinusoidally-driven
harmonic harmonic oscillator acts like a band-pass filter

> Connection between steady-state response & impulse response
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1. An inertial component, capable of carrying kinetic energy.

SHO Revisted %4
Two essential features: g

2. An elastic component, capable of storing elastic potential §

m

energy.

Two fundamental laws:

1. By Newton’s law (F = ma),

~kx = ma

2. By conservation of total mechanical energy (E),

imv? + $kx?2 = E

Two associated differential equations:
2 2
dx dx 2
m—— 4+ kx =0 im|=)} + 2kx" = E
dr2 £\ dt ¢

French (1971)



Aside: Solving 2"d order ODEs

2
d’'x
Numerous approaches to "solve": m dr2 +kx =0

x(t) = Acos (wot + ¢)
IZ~ Guess a solution and plugitin, e.g., x=A sin(wt + cpo)

IZ" Separate variables and integrate: (see Lec.05 notes)

The method of separation of variables works by putting all the z-values on one side of
the equation and all the y-values on the other, giving

We then integrate each side separately:

/ydy:—/xdx,

ydy = —xdx.

dx
I3 Rewrite as a system of 1%t order ODEs d¢ Y
(we'll return to this in a bit)
@ — —wir
dt °

Note: These methods are

IZ" Complex numbers! .
not mutually exclusive!



SHO: Complex exponentials

2
Rewrite in terms of d x 2
natural frequency dt2 + wx =0

—> Let us pause for one
moment, as we just made a big
connection point to other
classes/topics....

Now assume a solution in ot
the form of a (possibly) x = Ce
complex exponential:

What mathematically does p represent? Eigenvalue!

According to wikipedia:

Eigenvalues and eigenvectors feature prominently in the analysis of linear transformations. The
prefix eigen- is adopted from the German word eigen for "proper”, "characteristic". Originally
utilized to study principal axes of the rotational motion of rigid bodies, eigenvalues and eigenvectors
have a wide range of applications, for example in stability analysis, vibration analysis, atomic

orbitals, facial recognition, and matrix diagonalization.

French (1971)



Do you speak Matlab?

http://blogs.mathworks.com/cleve/2013/08/19/backslash/



Eigenvalues (& Eigenvectors)

Eigenvalue —
A scalar associated with a given linear transformation of a vector space and having the property
that there is some nonzero vector which when multiplied by the scalar is equal to the vector
obtained by letting the transformation operate on the vector; especially : a root of the
characteristic equation of a matrix

[from Merriam-Webster]

> Etymology: eigen is German for ‘own’, ‘peculiar’

> Rich history in mathematics (Cauchy, Euler, Fourier, Hilbert, ....)

> Used in a wide variety of physics & engineering applications such as:

= Classical mechanics (e.g., ‘principle axes’ in rigid body rotations)

= Quantum mechanics (e.g., for solutions to Schrodinger’s equation, the eigenvalue of
the wavefunction is the associated energy E)

= Principal Component Analysis (PCA)
= Image processing and ‘Eigenfaces’

= Harmonic oscillator...



Aside: Eigenfaces

> Keep in mind that an image is really just an array of

numbers....
i z\ _(a b T d_X — Ax
dt \y c d Y dt

.... much like the matrix form for linear ODEs

115 108 106 107 111 107 103 100 97
107 111 110 110 108 106 104 102 102
110 112 113 114 109 107 106 105 108

> So why not try calculating eigenvalues 115 114 114 114 111 109 110 111 113

and eigenvectors for an image?

114 115 114 117 116 116 116 116 117
114 122 121 124 122 120 121 121 122
113 124 126 129 131 128 127 124 123
114 124 131 135 136 135 130 123 120
120 132 137 140 140 136 128 118 117
121 132 142 144 147 135 125 118 111

91
102
109
113
116
121
122
118
116
109



Aside: Eigenfaces

> Averaging the faces emphasizes
common features

> Basic idea is the eigenvectors
(the associated eigenvalues
acting as their weighting)
uniquely identify a face and
thereby can be used for facial
recognition algorithms in
computer vision

> Goalis to obtain a ‘low-dimensional’ representation of a ‘face’ and is related
to the more general notion of Principal Component Analysis (PCA)

> Requires determination of an ‘average face’, then comparing to a ‘test image’
to quantify the associated ‘covariance’

= In short, a key method for machine vision re facial recognition....

Kutz (2013)



SHO: Complex exponentials

L 2
Rewrite in terms of d x 2

— 4+ wx =0

natural frequency dt2

Now assume a solution in ot
the form of a (possibly) x = Ce

complex exponential:

Plugin assumed - p2CePt 4 2P = 0 it robem cue to e
assumptions we made!
Associated eigenvalues
Solve through: p2 -+ w? =0 p2 = —O)2
p = £jw

French (1971)



SHO: Complex exponentials

X = Clefw‘ + Cze"f"" Plugging it back in...

x = Cellwt+a) + Ce—iwt+a) Now there are a couple ways things could
play out, but keep in mind the same basic
= 2C COS(wt + a) issue it at play: there are two free

arameters (C& o, or C; & (5, or 4 and a
= A cos(wt + ) i ‘ 8o ’

z = Acos(wt + a) + jA4sin(wt + «)
x =real part of z  where z = Aeiwtta)

Note: The imaginary part of z is not any less "physical”. It still contains the

two key pieces of information (i.e., 4 and o here)! Choosing the real part
here is just a convention.

French (1971)



SHO: Complex exponentials

x = Cellwt+a) 4 Ce—ilwt+a) Now there are a couple ways things could
play out, but keep in mind the same basic

2C COS(wt + a) issue it at play: there are two free
arameters (C& o, or C; & C,, or 4 and a
A cos(wt + a) P ‘ 86 )

Note: For the SHO, those two free parameters (plus our general form of the
solution) tell us everything about how the system will behave for all time(!!)

— So what determines those two free parameters?

d 2"d order ODE requires two unique initial conditions
—— -|- w x = () (or two unique boundary conditions) to find a specific
dt? solution [e.g., x(r=0) = x, and v(=0) = v, ]

French (1971)



SHO: A physical example (Floating Object)

Hydrometer Ship in water (neglecting waves, rocking motions, etc..)

- Force due to gravity is offset by the buoyant force,
which acts as a resotrative force (it is simply
proportional to the weight of fluid displaced)

French (1971)



SHO: A physical example (Floating Object)

Assume m is mass of hydrometer, pis the density of liquid, and only
the neck (w/ cross-sectional area A4) sticks above the waterline.
Upon setting up the coord system as shown, if y is the distance
above the waterline relative to rest, then we have:

2
d’y

Stemming from our Some reasonable values:
earlier analysis: 2
m= 10—“kg
w = gpA A= 25X 10"5m?2

g =~ 10 m/sec?

p=~ 1.2 X 103 kg/m3
, m
T = 27 o |——
gpA

Yields:

T = 1 sec

French (1971)



SHO: A physical example (Floating Object)

m
T = 2 o |——
\}gpA

Assume ship bottom is flat. Then the "draft" of
the ship (4, i.e., the distance from the waterline
down to the bottom yields an estimate of the
ships mass):

m = pAh
h - For a large ship w/ a 10 m draft, the
T =27 E period of oscillation is ~6 s

French (1971)



Damping....

The "real world" is generally not as conservative as the canonical "simple" oscillator
thus far considered....

Recall how messy things got for projectile motion w/ drag....

Baseball trajectories
80 +
.... honetheless we carry on.
halt Air resistance is a significant force
E‘, on fa.lling- leaves. It points opposite
= 40 T the direction of motion.

[y
o
1

x(m)

4
-

General form for resistive
force of a "fluid" on an object

R@®) = biv + bov?

French (1971)



Recall

f=—f@)9¥, @2.1)

where v = v/|v| denotes the unit vector in the direction of v, and f (v) is the magnitude

R@) = bv + baov? of f.

The function f(v) that gives the magnitude of the air resistance varies with v in
a complicated way, especially as the object’s speed approaches the speed of sound.
However, at lower speeds it is often a good approximation to write!

fw)=bv+ cv’ = Jiin + fquad 22)
where fy, and fy,,q stand for the linear and quadratic terms respectively,
Projectiles aside, we presently

. . fin=bv and  fy.q=cv’. (2.3)
have a STRONG interest in

. . . The physical origins of these two terms are quite different: The linear term, fj;,, arises
kee pINg thi ngs linear at the from the viscous drag of the medium and is generally proportional to the viscosity of
mom ent, and thus will assume the med?um and the line‘?r si.ze of thf: projectile (Problem 2.2). T hfa q\fadrati_c te.rn-l,

. . fquad» arises from the projectile’s having to accelerate the mass of air with which it is
for sim pI ICIty b1 >> b2 continually colliding; fq,,q is proportional to the density of the medium and the cross-
sectional area of the projectile (Problem 2.4). In particular, for a spherical projectile

(a cannonball, a baseball, or a drop of rain), the coefficients » and ¢ in (2.2) have the
form

b=BD and c¢=yD? (2.4)

Taylor (2005)



Damped HO

d’x
Egn. of motion m—= —kx — bv
dt?

2 where
Making a d’x dx
change of > - Y ! w02x =0 Y b - P
variables: dt dt = ; wo. = ..';2..

Now we must deal w/ a necessary reality: Despite solutions (possibly) being
oscillatory, they will not/cannot be sinusoidal

French (1971)



Signal

DHO

(given an "impulse" push at = 0)

Time Waveform

0.8

0.6

0.4}

0.2

Note: This is the impulse
response for the DHO

10
Time [ms]

15

\\\g\\\\
i

Now we must deal w/ a necessary
reality: Despite solutions
(possibly) being oscillatory, they
will not/cannot be sinusoidal....

.... but intuitively you already
knew this



Damped HO

d’x
Egn. of motion m—= —kx — bv
dt?

where (remember these!)

Making a d X dx

change of +7-—+w0x_0

variables: dt2 ’}’ — 2 woz 3 -,f-
m m

Now we must deal w/ a necessary reality: Despite solutions (possibly) being
oscillatory, they will not/cannot be sinusoidal

So we shift to a complex form.... With an assumed
d2 solution of the form
A

dz :
e -+ ‘Y—- + wo 2; = 0 » = Ae:(pt+a)

French (1971)



Complex Exponentials....

Time Waveform

0.8

|
=

<2

wo 2
0.6F ] dt 0

0.4+

0.2

Signal
o

” = Aea(pt+a)

-0.6 _
0 - Not only does this assumed
-0.8F - : s .
| | | form of solution capture the
B 5 10 15 oscillation, it also describes the
Time [ms]

exponential decay/growth
(all of which is encapsulated in the
eigenvalues)

French (1971)



Recall

Problem 1. A first-order, linear differential equation with constant coefficients and a constant
inhomogeneous (drive or input) term has an exponential solution. Therefore, the solution can be
written in the form

n(t) = Neo + (no — noo) e T

where nq = n(0) is the initial value of n(t) and n,, = lim;_,, n(t) is the final value of n(t). The
form of this solution can be verified by evaluating n(¢) at ¢ = 0 and ¢t — oo. Substitution into the
differential equation shows that this solution satisfies the differential equation. The solutions for
cases i-vi are shown in Figure 1. The solutions for part a (i and i1) have the same initial and final
values but different time constants (by ¢ = 10 s, curve ii is just above 6 and has not yet reached
its final value of 10). The solutions for part b (iii and iv) have the same initial values and different
final values. Although curve iv was calculated with the same time constant as in iii, it doesn’t make
sense to compare the time constants of the curves, since curve iv isn’t changing. The solutions for
part ¢ (v and vi) have different initial and final values and the same time constants.



Recall

n(t)

10

-10

1 2 3 4 5 t(s)

-5

-10

A 2 3 4 5 t(s)

Signal

Time Waveform

0.8 -

0.6 .

0.4 -

Time [ms]

» = Ae:(pt-i-a)

z = Acos(wt + a) + jA4sin(wt + «)

Figure 1. Solutions to parts i-vi. In the upper panel, horizontal dotted lines are shown at the final value of 10 and for the value of
n(t) att = 7,ie., the lineis at 10(1 — e~ 1).



Damped HO (via complex exponentials)

pt
x = Ce
Note:
There are a lot of starting points w/ regard to
aspects such as the assumed form of the i(pt+a)
solution (see right & below as different possible zZ = A

examples). They may lead in slightly different

directions analysis-wise, but ultimately they lead

to the same place. It is worthwhile to spend a bit

of to convince yourself of such, especially as you i(wt+S
. x(t) = Ae (wt+9)

learn new mathematical methods....

q A=0

dx _ p=A+D
dat TAX*By  4-ap-BC
g—¥=Cx+Dy A=p®-4q
French (1971)



Damped HO (via complex exponentials)

. ; d’ dz 2
Combining — J(ptta) Z Y zZ =
these two: 2 Ae dte ‘ dt + “o 0

We obtain: (—p2 -+ JjDY + w02)Aej(pt+a) = (

Or more n2 . 2 _ This is sometimes referred to
succinctly: p + JPW + @o 0 as the characteristic equation

p=n-js
A handful of ways to deal w/
this, such as rewriting in terms Real parts: —n2 42— Y+ we?=0
of real and imaginary parts and Imaginary parts: s+ ny =0

solving each separately:

Note: Another approach is to solve the char. eqn. via the quadratic formula
(see additional slides at end)

French (1971)



Damped HO (via complex exponentials) .
i(ptta)
z = AP

When the Y 2 2 72 )
smoke clears: § = 5 n =w — 4 p=n-+js
: . — i(nt+jst+a) And subsequently, from
Plugging back in: 2 Ae our convention:

= —alyj(nt+a)
Ae™*'e x = Ae~* cos(nt + a)

Using variables X = Ae""”z cos(wt + a)
from the ODE:

72 k bz —> The system doesn't
where w2 = co02 —_— = — even oscillate at the
4 m 4m? natural frequency!

French (1971)



Damped HO: Loss of Energy

For the moment, let's assume
(i.e., relatively small damping)

T < w,

Recall that for SHO, the — 1 2
total energy is: E = 2kA
gy is:

Thus for the damped
case, we have:

A(t) = Age Y2

Or more succinctly:

E(t) = Ege— 7t

dt? dt
k
"Y=£ w02=-—-
m m
2 2 72 k b2
W =w) — - = — — -

- Thus energy leaks out via
an exponential decay due
to the damping

French (1971)



Damped HO: Loss of Energy

Time Waveform

Signal

X = Ae“"”zcos(wt + a)
E(t) = Ege—t

- What about other

relative damping cases?
(i.e., small vs medium vs large

Note - Recall that

we assumed

z = Ae

J(ptta)

Time [ms]

... but a more common
convention is

¢
x = Ce’

damping)
p=mn-]s
Y ng 2 72
—_— — w — —
§ 2 0 4

Thus it is more typical to find that the
real part of the eigenvalue describes
energy loss/gain (rather than the
imaginary part, as is the case here)



Reference: System of linear autonomous ODEs

> Let’s consider a simple 2" order system (all these
ideas scale up for higher dimension systems)

» Re-express in matrix/vector form:

d [x
dt \y

o
oy
=

> Let’s make an assumption: solutions will have the
form of (possibly complex) exponentials

dx
dit

dx
dt

dt

ax + by

cx + dy

k'l k3 This expression explicitly deals with the
T = [ creMt 4 coe?t

ko k4

eigenvalues and eigenvectors of the system

wikipedia (phase space)



Reference: Eigen Decomposition

d (x a b T dx
— — — = Ax
dt \y ¢ d ) \y dt
Characteristic - determinant (det) is
equation: det(A o )‘I) =0 scalar value associated
with a square matrix
ODE as combination of eigenvalues AX - )\X ‘secular equation’

and eigenvectors

k k
General solution: Tr = 1 cle>‘1t + 3 C2€>\2t
k2 ]C4

- Remember, we implicitly assume the solution has this exponential form!



Reference: Finding Eigenvalues

Characteristic det(A o )\I) — 0

equation:

Quadratic equation w/

two roots (for a 2nd )\2 — )\(a + d) + (ad — bc) — ()

order system)

Note that complex roots (CL — d) + \/(CL -+ d)2 — 4(ad — bC)
are possible — 9
ki | e, | ks
T = cre’t Coe”?
B 1 =+ ks 2

—> Eigenvalues explicitly tell you how the solutions behave!



Reference: Classification of equilibrium points (linear autonomous 2" order systems)

q A=0

Orbits

p=A+D
=Ax + By g =AD - BC

cx+Dy A=p°-4q

Qala
Sk

Q

t



5 —3
4 o br—3 A:<2 —4>
a ot
dy det(A — AI) = 0

9 4
e v

—> Only a single equlibrium point
exists (at the origin). Stability?

p=Tr(A)=5+(—4) =1

¢ = det(A) = 5(—4) — (~3)2 = ~14

A =

%(12:\/14—56)

T = [ Zl ] cret + [ 23 ] coe?! A= —3.27,4.27
2 4

— General solution is a linear combination of a (real-valued) exponentials,
one converging and one diverging



Ex. (cont.)

q A=0 p=Tr(A) =5+ (—4) =1
q=det(A) =5(—4) — (=3)2=—14

A= —3.27.4.27

—> Solution curves
approach the origin,
then diverge away

—> Equilibrium point at
origin (where the
eigenvectors meet) is
_ p=A+D said to be a saddle
dat ~AX*BY  g-aD-BC

—cx+Dy A=p°-4q

dx
dt
ay

t

Q|



Damped HO (Alternative Approach re complex exponentials)

Rewrite as a system of first order ODEs

&4 yi 4+ wiz =0 dx

) = Whatifyis zero? Negative?

= Depending upon the sign and relative
values of y and w,, A can be complex

—> Eigenvalues characterize behavior of all possible
solution types!

:c(t) :Ae—fyt/Z ez’(wt—i—a)




LINode45EX.m

% ### LINodedS5EX.m ### 01.26.16
% Numerically integrate a general 2nd order linear autonomous system (w/ H
% const. coeif/ficiegts) B Y ( LINfunCtlonm
% x' = a*x + b*y
g y' = c*x + d*y
clear
S
% User input (Note: All paramters are stored in a structure)
P.y0(1l) = 1.0; % initial value for x function [outl] = LINfunction(t,y,flag,P)
P.y0(2) = 1; % initial value for y S
P.A= [-3.9 3; % matrix A to contain coefficients A= [a b °

2 11; % c d] % v(l) ... x

% v(2) ... ¥y

% Integration limits outl(l)= P.A(1l,1)*y(1l) + P.A(1,2)*y(2);
P.t0 = 0.0; % Start value out1(2)= P.A(2,1)*y(1) + P.A(2,2)*y(2);

P.tf = 10.0; % Finish value

= 0.01; ¢ time step outl= outl';

]

[

o
|

% determine some basic derived quantities
p= P.A(1l,1)+ P.A(2,2); % Tr(A)
g= P.A(1,1)* P.A(2,2)-P.A(1,2)* P.A(2,1); % det(R)

disp([ 'Tr(A)= ' num2str(p),' and det(A)= ',num2str(q)l);

eigVl= [0.5*(ptsqrt(p”2-4*q)) 0.5*(p-sqrt(p”2-4*q))]; % calc. eigenvalues directly
eigV2= eig(P.A); % calculate via Matlab's built-in routine

disp(['eigenvalues= ' num2str(eigvl(l)),' and ',num2str(eigV1(2))]);

% +++

% use built-in ode45 to solve
[t y] = ode45( 'LINfunction', [P.t0:P.dt:P.tf],P.y0,[]1,P);

% visualize

% NOTE (re variable naming): x=y(l) and y=y(2)

figure(l); clf;

plot(t,y(:,1)); hold on; grid on;

xlabel('t"); ylabel('x(t)")

% Phase plane

figure(2); clf;

plot(y(:,1), y(:,2)); hold on; grid on;

xlabel('x(t)"'); ylabel('y(t)")

% "solution space"

figure(3); clf;

plot(p,q, 'rx', 'MarkerSize',9, 'LineWidth',3); hold on; grid on;
if (abs(p)<l), pSpan= linspace(-1,1,100);

else pSpan= linspace(-1.5*p-0.1,1.5*p+0.1,100); end

gSpan= pSpan.”2/4;

plot(pSpan,gSpan, 'k-', 'LineWidth',2); %ylim([-max(gSpan) max(gSpan)])
plot(pSpan, zeros(numel (pSpan),1l), 'b—-", 'LineWidth',2);
xlabel('Tr(A)"); ylabel('det(A)")



Damped HO (Phase Plane Analysis)

- Computationally, use our ode45 code or pplane to explore behavior of solution curves

pplane?7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help ¥

x'=5x-3y
y'=2x-4y

® 06 pplane7 Setup

File Edit Gallery Desktop Window Help

The differential equations.

x '= B3ty
y = 2xaty

Parameters

expressions

The display window. The direction field.

The minimum value of x = - o
2 @ Number of
The maximum value of x = 4 | Lines field points per
- et row or column. = = Quit
The minimum value of y = 4 ) Nullclines i 3 i !
The maximum value of y = 2 20 £ =1 0 1 2 3 4

ition: 4 X
— Cursor position: (3.31, -5.68)

The backward orbit from (-0.11, -0.096) left the computation window.
Ready.

The forward orbit from (0.4, 0.48) left the computation window.
The backward orbit from (0.4, 0.48) left the computation window.
Ready.

MATLAB R2013a
AL LR ESeE @lQSearch Documentation

SHORTCUTS

§ <= = (51 & 3/ » Users » pumpkin » Dropbox » Collaborations » UWO » Data » 09.19.14B » P
B Current Folder ® Command Window ®
i B Name & >>

> OAnalysis .
#") analyze091914B.m 22
‘j ana|§e0919143.m~ ==

>>

- Zwis4Lear.EP1.txt >>
- Zwis4Lear.EP2.txt >>
- Zwis4Lear40_dSFOAE1k2k.txt >>
- Zwis4Lear40_dSFOAE2k3k.txt ::
- Zwis4Lear40_dSFOAE3k4k.txt ss
"~ Zwis4Lear40_dSFOAE4K5k.txt >>
'~ Zwis4Lear40_dSFOAEcomp.... >>
- Zwis4Lear40_dSFOAEp5k1k... >
{1 Zwis4Lear_sSFOAE_01_anal... .
5 Zwis4Lear_sSFOAE_01_DA... >>
- Zwis4Lear_sSFOAE_01_DA... >>

— = >> pplane7
Details A




Damped HO (Phase Plane Analysis)

® O O pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

wa=2

W2 X - gammay gammma= 0.5

pplane7 Setup
File Edit Gallery Desktop Window

The differential equations.

-w2*x - gamma

w2
Parameters
or gamma
expressions

The display window. The direction field.

The minimum value of x = (@) Arrows
&/ Number of

The maximum value of x = () Lines field points per
- p= row or column.
The minimum value of y = U Nullclines

The maximum value of y = Q None

i
-2
Cursor position: (-2.59, -0.912)

The backward orbit from (0.31, -1.4) left the computation window.

Ready.

The forward orbit from (2.2, -2.2) --> a possible eq. pt. near (1.6e-14, -9.7e-15).
The backward orbit from (2.2, -2.2) left the computation window.

Ready.




Damped HO (Phase Plane Analysis)

pplane7 Setup

® O O pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

v wi=2
y'=-wd x- gammay gamma= 2

Edit Gallery Desktop Window Help

The differential equations.

-W2*x - gamma*y

w2
Parameters
or
expressions

The display window.
The minimum value of x =
The maximum value of x =
The minimum value of y =

The maximum value of y =

The direction field.

@ Arrows
U Lines
Q Nullclines

Q None

Number of
field points per
row or column.

o
Cursor position: (-1.78, 0.789)

The backward orbit from (-0.99, -2.9) left the computation window.

Ready.

The forward orbit from (0.39, 1.8) --> a possible eq. pt. near (3.6e-15, 5.4e-16).
The backward orbit from (0.39, 1.8) left the computation window.

Ready.




Damped HO (Phase Plane Analysis)

e 0 6 pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

w2=20

pplane?7 Setup

Edit Gallery Desktop Window Help

The differential equations.

y
-w2*X - gamma

w2
Parameters

or
expressions

The display window. The direction field.

The minimum value of x = . (o) A
() ki Number of

The maximum value of x = \J Lines field points per
. = row or column.
The minimum value of y = s U Nuliclines

The maximum value of y = Q None

i
2 -1
Cursor position: (-2.77, -0.965)

The backward orbit from (1.9, -0.89) left the computation window.

Ready.

The forward orbit from (-2, -1) --> a possible eq. pt. near (6.1e-17, 2e-14).
The backward orbit from (-2, -1) left the computation window.

Ready.
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The differential equations.

-W2*X - gamma*y

w2

Parameters
or
expressions

The display window. The direction field.

The minimum value of x = ‘o) Arrows
o Number of

The maximum value of x = U Lines field points per
g — row or column.
The minimum value of y = U Nullclines

The maximum value of y = U None

Cursor position: (-2.78, -1.02)

The backward orbit from (3.5, -2.5) left the computation window.

Ready.

The forward orbit from (1.7, -3.8) --> a possible eq. pt. near (1.8e-14, -1.9e-14).
The backward orbit from (1.7, -3.8) left the computation window.

Ready.




