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K 233. Two Sprinters \

Which sprinter will run a longer distance
to make the full circle and get to the start
position (or will they run equal distances)?

\( A )( B )(' EquolJ’




Looking Ahead....
Damped HO (DHO)

4 Time Waveform
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"Transient" responses...
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> The steady-state response of the sinusoidally-driven
harmonic harmonic oscillator acts like a band-pass filter

> Connection between steady-state response & impulse response
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1. An inertial component, capable of carrying kinetic energy.

SHO Revisted %4
Two essential features: g

2. An elastic component, capable of storing elastic potential §

m

energy.

Two fundamental laws:

1. By Newton’s law (F = ma),

~kx = ma

2. By conservation of total mechanical energy (E),

imv? + $kx?2 = E

Two associated differential equations:
2 2
dx dx 2
m—— 4+ kx =0 im|=)} + 2kx" = E
dr2 £\ dt ¢

French (1971)



SHO: Complex exponentials

L 2
Rewrite in terms of d x 2

— 4+ wx =0

natural frequency dt2

Now assume a solution in ot
the form of a (possibly) x = Ce

complex exponential:

Plugin assumed - p2CePt 4 2P = 0 it robem cue to e
assumptions we made!
Associated eigenvalues
Solve through: p2 -+ w? =0 p2 = —O)2
p = £jw

French (1971)



SHO: Complex exponentials

X = Clefw‘ + Cze"f"" Plugging it back in...

x = Cellwt+a) + Ce—iwt+a) Now there are a couple ways things could
play out, but keep in mind the same basic
= 2C COS(wt + a) issue it at play: there are two free

arameters (C& o, or C; & (5, or 4 and a
= A cos(wt + ) i ‘ 8o ’

z = Acos(wt + a) + jA4sin(wt + «)
x =real part of z  where z = Aeiwtta)

Note: The imaginary part of z is not any less "physical”. It still contains the

two key pieces of information (i.e., 4 and o here)! Choosing the real part
here is just a convention.

French (1971)



SHO: Complex exponentials

x = Cellwt+a) 4+ Ce—iwt+a) Now there are a couple ways things could
play out, but keep in mind the same basic

2C COS(wt + a) issue it at play: there are two free
arameters (C& o, or C; & C,, or 4 and a
A cos(wt + a) P ‘ 86 )

Note: For the SHO, those two free parameters (plus our general form of the
solution) tell us everything about how the system will behave for all time(!!)

— So what determines those two free parameters?

d 2"d order ODE requires two unique initial conditions
—— -|- w x = () (or two unique boundary conditions) to find a specific
dt? solution [e.g., x(=0) = x, and v(=0) = v, ]

French (1971)



French (1971)



Damped HO

d’x
Egn. of motion m—= —kx — bv
dt?

2 where
Making a d’x dx
change of > - Y ! w02x =0 Y b - P
variables: dt dt = ; wo. = ..';2..

Now we must deal w/ a necessary reality: Despite solutions (possibly) being
oscillatory, they will not/cannot be sinusoidal

French (1971)



Damped HO

d’x
Egn. of motion m—= —kx — bv
dt?

where (remember these!)

Making a d X dx

change of +7-—+w0x_0

variables: dt2 ’}’ — 2 woz 3 -,f-
m m

Now we must deal w/ a necessary reality: Despite solutions (possibly) being
oscillatory, they will not/cannot be sinusoidal

So we shift to a complex form.... With an assumed
d2 solution of the form
A

dz :
e -+ ‘Y—- + wo 2; = 0 » = Ae:(pt+a)

French (1971)



Complex Exponentials....

Time Waveform

0.8

|
=

<2
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0.4+

0.2

Signal
o

” = Aea(pt+a)

-0.6 _
0 - Not only does this assumed
-0.8F - : s .
| | | form of solution capture the
B 5 10 15 oscillation, it also describes the
Time [ms]

exponential decay/growth
(all of which is encapsulated in the
eigenvalues)

French (1971)



Damped HO (via complex exponentials)

pt
x = Ce
Note:
There are a lot of starting points w/ regard to
aspects such as the assumed form of the i(pt+a)
solution (see right & below as different possible zZ = A

examples). They may lead in slightly different
directions analysis-wise, but ultimately they lead
to the same place. It is worthwhile to spend a bit

of to convince yourself of such, especially as you L i(wt+6)
learn new mathematical methods.... x(t) = Ae

q A=0

dx _ p=A+D
dat TAX*By  4-ap-BC
g—¥=Cx+Dy A=p®-4q
French (1971)



Damped HO (via complex exponentials)

. ; d’ dz 2
Combining — J(ptta) Z Y zZ =
these two: 2 Ae dte ‘ dt + “o 0

We obtain: (—p2 -+ JjDY + w02)Aej(pt+a) = (

Or more n2 . 2 _ This is sometimes referred to
succinctly: p + JPW + @o 0 as the characteristic equation

p=n-js
A handful of ways to deal w/
this, such as rewriting in terms Real parts: —n2 42— Y+ we?=0
of real and imaginary parts and Imaginary parts: s+ ny =0

solving each separately:

Note: Another approach is to solve the char. eqn. via the quadratic formula
(see additional slides at end)

French (1971)



Damped HO (via complex exponentials) .
i(ptta)
z = AP

When the Y 2 2 72 )
smoke clears: § = 5 n =w — 4 p=n-+js
: . — i(nt+jst+a) And subsequently, from
Plugging back in: 2 Ae our convention:

= —alyj(nt+a)
Ae™*'e x = Ae~* cos(nt + a)

Using variables X = Ae""”z cos(wt + a)
from the ODE:

72 k bz —> The system doesn't
where w2 = co02 —_— = — even oscillate at the
4 m 4m? natural frequency!

French (1971)



Damped HO: Loss of Energy

For the moment, let's assume
(i.e., relatively small damping)

T < w,

Recall that for SHO, the — 1 2
total energy is: E = 2kA
gy is:

Thus for the damped
case, we have:

A(t) = Age Y2

Or more succinctly:

E(t) = Ege— 7t

dt? dt
k
"Y=£ w02=-—-
m m
2 2 72 k b2
W =w) — - = — — -

- Thus energy leaks out via
an exponential decay due
to the damping

French (1971)



Damped HO: Loss of Energy

Time Waveform

Signal

X = Ae“"”zcos(wt + a)
E(t) = Ege—t

- What about other

relative damping cases?
(i.e., small vs medium vs large

Note - Recall that

we assumed

z = Ae

J(ptta)

Time [ms]

... but a more common
convention is

¢
x = Ce’

damping)
p=mn-]s
Y ng 2 72
—_— — w — —
§ 2 0 4

Thus it is more typical to find that the
real part of the eigenvalue describes
energy loss/gain (rather than the
imaginary part, as is the case here)



Reference: System of linear autonomous ODEs

> Let’s consider a simple 2" order system (all these
ideas scale up for higher dimension systems)

» Re-express in matrix/vector form:

d [x
dt \y

o
oy
=

> Let’s make an assumption: solutions will have the
form of (possibly complex) exponentials

dx
dit

dx
dt

dt

ax + by

cx + dy

k'l k3 This expression explicitly deals with the
T = [ creMt 4 coe?t

ko k4

eigenvalues and eigenvectors of the system

wikipedia (phase space)



Reference: Eigen Decomposition

d (x a b T dx
— — — = Ax
dt \y ¢ d ) \y dt
Characteristic - determinant (det) is
equation: det(A o )‘I) =0 scalar value associated
with a square matrix
ODE as combination of eigenvalues AX - )\X ‘secular equation’

and eigenvectors

k k
General solution: Tr = 1 cle>‘1t + 3 C2€>\2t
k2 ]C4

- Remember, we implicitly assume the solution has this exponential form!



Reference: Finding Eigenvalues

Characteristic det(A o )\I) — 0

equation:

Quadratic equation w/

two roots (for a 2nd )\2 — )\(a + d) + (ad — bc) — ()

order system)

Note that complex roots (CL — d) + \/(CL -+ d)2 — 4(ad — bC)
are possible — 9
ki | e, | ks
T = cre’t Coe”?
B 1 =+ ks 2

—> Eigenvalues explicitly tell you how the solutions behave!



Reference: Classification of equilibrium points (linear autonomous 2" order systems)

q A=0

Orbits

p=A+D
=Ax + By g =AD - BC

cx+Dy A=p°-4q

Qala
Sk

Q

t



5 —3
4 o br—3 A:<2 —4>
a ot
dy det(A — AI) = 0

9 4
e v

—> Only a single equlibrium point
exists (at the origin). Stability?

p=Tr(A)=5+(—4) =1

¢ = det(A) = 5(—4) — (~3)2 = ~14

A =

%(12:\/14—56)

T = [ Zl ] cret + [ 23 ] coe?! A= —3.27,4.27
2 4

— General solution is a linear combination of a (real-valued) exponentials,
one converging and one diverging



Ex. (cont.)

q A=0 p=Tr(A) =5+ (—4) =1
q=det(A) =5(—4) — (=3)2=—14

A= —3.27.4.27

—> Solution curves
approach the origin,
then diverge away

—> Equilibrium point at
origin (where the
eigenvectors meet) is
_ p=A+D said to be a saddle
dat ~AX*BY  g-aD-BC

—cx+Dy A=p°-4q

dx
dt
ay

t

Q|



Damped HO (Alternative Approach re complex exponentials)

Rewrite as a system of first order ODEs

&4 yi 4+ wiz =0 dx

) = Whatifyis zero? Negative?

= Depending upon the sign and relative
values of y and w,, A can be complex

—> Eigenvalues characterize behavior of all possible
solution types!

:c(t) :Ae—fyt/Z ez’(wt—i—a)




LINode45EX.m

% ### LINodedS5EX.m ### 01.26.16
% Numerically integrate a general 2nd order linear autonomous system (w/ H
% const. coeif/ficiegts) B Y ( LINfunCtlonm
% x' = a*x + b*y
% y' = c*x + d*y
clear
S
% User input (Note: All paramters are stored in a structure)
P.y0(1l) = 1.0; % initial value for x function [outl] = LINfunction(t,y,flag,P)
P.y0(2) = 1; % initial value for y S
P.A= [-3.9 3; % matrix A to contain coefficients A= [a b °

2 11; % c d] % v(l) ... x

% v(2) ... ¥y

% Integration limits outl(l)= P.A(1l,1)*y(1l) + P.A(1,2)*y(2);
P.t0 = 0.0; % Start value out1(2)= P.A(2,1)*y(1) + P.A(2,2)*y(2);

P.tf = 10.0; % Finish value

= 0.01; ¢ time step outl= outl';

]

[

o
|

% determine some basic derived quantities
p= P.A(1l,1)+ P.A(2,2); % Tr(A)
g= P.A(1,1)* P.A(2,2)-P.A(1,2)* P.A(2,1); % det(R)

disp([ 'Tr(A)= ' num2str(p),' and det(A)= ',num2str(q)l);

eigVl= [0.5*(ptsqrt(p”2-4*q)) 0.5*(p-sqrt(p”2-4*q))]; % calc. eigenvalues directly
eigV2= eig(P.A); % calculate via Matlab's built-in routine

disp(['eigenvalues= ' num2str(eigvl(l)),' and ',num2str(eigV1(2))]);

% +++

% use built-in ode45 to solve
[t y] = ode45( 'LINfunction', [P.t0:P.dt:P.tf],P.y0,[]1,P);

% visualize

% NOTE (re variable naming): x=y(l) and y=y(2)

figure(l); clf;

plot(t,y(:,1)); hold on; grid on;

xlabel('t"); ylabel('x(t)")

% Phase plane

figure(2); clf;

plot(y(:,1), y(:,2)); hold on; grid on;

xlabel('x(t)"'); ylabel('y(t)")

% "solution space"

figure(3); clf;

plot(p,q, 'rx', 'MarkerSize',9, 'LineWidth',3); hold on; grid on;
if (abs(p)<l), pSpan= linspace(-1,1,100);

else pSpan= linspace(-1.5*p-0.1,1.5*p+0.1,100); end

gSpan= pSpan.”2/4;

plot(pSpan,gSpan, 'k-', 'LineWidth',2); %ylim([-max(gSpan) max(gSpan)])
plot(pSpan, zeros(numel (pSpan),1l), 'b—-", 'LineWidth',2);
xlabel('Tr(A)"); ylabel('det(A)")



Damped HO (Phase Plane Analysis)

- Computationally, use our ode45 code or pplane to explore behavior of solution curves

pplane?7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help ¥

x'=5x-3y
y'=2x-4y

® 06 pplane7 Setup

File Edit Gallery Desktop Window Help

The differential equations.

x '= B3ty
y = 2xaty

Parameters

expressions

The display window. The direction field.

The minimum value of x = - o
2 @ Number of
The maximum value of x = 4 | Lines field points per
- et row or column. = = Quit
The minimum value of y = 4 ) Nullclines i 3 i !
The maximum value of y = 2 20 £ =1 0 1 2 3 4

ition: 4 X
— Cursor position: (3.31, -5.68)

The backward orbit from (-0.11, -0.096) left the computation window.
Ready.

The forward orbit from (0.4, 0.48) left the computation window.
The backward orbit from (0.4, 0.48) left the computation window.
Ready.

MATLAB R2013a
AL LR ESeE @lQSearch Documentation

SHORTCUTS

§ <= = (51 & 3/ » Users » pumpkin » Dropbox » Collaborations » UWO » Data » 09.19.14B » P
B Current Folder ® Command Window ®
i B Name & >>

> OAnalysis .
#") analyze091914B.m 22
‘j ana|§e0919143.m~ ==

>>

- Zwis4Lear.EP1.txt >>
- Zwis4Lear.EP2.txt >>
- Zwis4Lear40_dSFOAE1k2k.txt >>
- Zwis4Lear40_dSFOAE2k3k.txt ::
- Zwis4Lear40_dSFOAE3k4k.txt ss
"~ Zwis4Lear40_dSFOAE4K5k.txt >>
'~ Zwis4Lear40_dSFOAEcomp.... >>
- Zwis4Lear40_dSFOAEp5k1k... >
{1 Zwis4Lear_sSFOAE_01_anal... .
5 Zwis4Lear_sSFOAE_01_DA... >>
- Zwis4Lear_sSFOAE_01_DA... >>

— = >> pplane7
Details A




Damped HO (Phase Plane Analysis)

® O O pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

wa=2

W2 X - gammay gammma= 0.5

pplane7 Setup
File Edit Gallery Desktop Window

The differential equations.

-w2*x - gamma

w2
Parameters
or gamma
expressions

The display window. The direction field.

The minimum value of x = (@) Arrows
&/ Number of

The maximum value of x = () Lines field points per
- p= row or column.
The minimum value of y = U Nullclines

The maximum value of y = Q None

i
-2
Cursor position: (-2.59, -0.912)

The backward orbit from (0.31, -1.4) left the computation window.

Ready.

The forward orbit from (2.2, -2.2) --> a possible eq. pt. near (1.6e-14, -9.7e-15).
The backward orbit from (2.2, -2.2) left the computation window.

Ready.




Damped HO (Phase Plane Analysis)

pplane7 Setup

® O O pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

v wi=2
y'=-wd x- gammay gamma= 2

Edit Gallery Desktop Window Help

The differential equations.

-W2*x - gamma*y

w2
Parameters
or
expressions

The display window.
The minimum value of x =
The maximum value of x =
The minimum value of y =

The maximum value of y =

The direction field.

@ Arrows
U Lines
Q Nullclines

Q None

Number of
field points per
row or column.

o
Cursor position: (-1.78, 0.789)

The backward orbit from (-0.99, -2.9) left the computation window.

Ready.

The forward orbit from (0.39, 1.8) --> a possible eq. pt. near (3.6e-15, 5.4e-16).
The backward orbit from (0.39, 1.8) left the computation window.

Ready.




Damped HO (Phase Plane Analysis)

e 0 6 pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

w2=20

pplane?7 Setup

Edit Gallery Desktop Window Help

The differential equations.

y
-w2*X - gamma

w2
Parameters

or
expressions

The display window. The direction field.

The minimum value of x = . (o) A
() ki Number of

The maximum value of x = \J Lines field points per
. = row or column.
The minimum value of y = s U Nuliclines

The maximum value of y = Q None

i
2 -1
Cursor position: (-2.77, -0.965)

The backward orbit from (1.9, -0.89) left the computation window.

Ready.

The forward orbit from (-2, -1) --> a possible eq. pt. near (6.1e-17, 2e-14).
The backward orbit from (-2, -1) left the computation window.

Ready.




Damped HO (Phase Plane Analysis)

® O 06 pplane7 Display
File Edit Solutions Options Graph View Insert Desktop Window Help

w2=20

w2 X-gammay

pplane7 Setup
File Edit Gallery Desktop Window

The differential equations.

-W2*X - gamma*y

w2

Parameters
or
expressions

The display window. The direction field.

The minimum value of x = ‘o) Arrows
o Number of

The maximum value of x = U Lines field points per
g — row or column.
The minimum value of y = U Nullclines

The maximum value of y = U None

Cursor position: (-2.78, -1.02)

The backward orbit from (3.5, -2.5) left the computation window.

Ready.

The forward orbit from (1.7, -3.8) --> a possible eq. pt. near (1.8e-14, -1.9e-14).
The backward orbit from (1.7, -3.8) left the computation window.

Ready.




