PHYS 2010 (W20) Classical Mechanics

2020.03.03

Relevant reading:

Knudsen & Hjorth: 15.6

Christopher Bergevin

York University, Dept. of Physics & Astronomy

Office: Petrie 240 Lab: Farq 103

cberge@yorku.ca

Ref.s:

Knudsen & Hjorth (2000), Fowles & Cassidy (2005)

This is a word game that's trickier than it looks. I would like you to make the longest word you can using only the six letters illustrated below.

Your answer must be a well-known English word, and you are not allowed to use any letter twice.

Think you've got a good answer? I can virtually guarantee that my solution will slay your effort.

Looking Ahead.....

1. Time response of 'system' when subjected to an impulse (e.g., striking a bell w/ a hammer)

2. Fourier transform of resulting response

(e.g., spectrum of bell ringing)

ex. Harmonic oscillator

Spectral impulse response

(Important) Note: The Fourier transform of the impulse response is called the *transfer function*

Case 1: Undamped undriven HO (i.e., SHO)

$$F = ma = m\ddot{x} = -kx$$

Newton's Second Law Hooke's Law

$$\ddot{x} + \frac{k}{m}x = 0$$

(no need worrying about how to "solve", yet...)

$$x(t) = A\cos\left(\omega_o t + \phi\right)$$

⇒ Solution is oscillatory!

$$\omega_o = \sqrt{k/m}$$

System has a natural frequency

Case 2: Undamped driven HO

$$\ddot{x} + \frac{k}{m}x = F_o \cos \omega t$$

Sinusoidal driving force at frequency ω

Assumption: Ignore onset behavior and that system oscillates at frequency ω

$$x(t) = B\cos(\omega t + \alpha)$$

Assumed form of solution

$$-m\omega^2 B\cos\omega t + kB\cos\omega t = F_o\cos\omega t$$

$$x(t) = \frac{F_o/m}{\omega_o^2 - \omega^2} \cos(\omega t + \alpha)$$

Case 2: Undamped driven HO

$$x(t) = \frac{F_o/m}{\omega_o^2 - \omega^2} \cos(\omega t + \alpha) = \kappa(\omega) \cos(\omega t + \alpha)$$

Two Important Concepts Demonstrated Here:

- Resonance when system is driven at natural frequency
- Phase shift of 1/2 cycle about resonant frequency

Case 3: Damped undriven HO

$$m\ddot{x} + b\dot{x} + kx = 0$$

Purely sinusoidal solution no longer works!

$$\ddot{x} + \gamma \dot{x} + \omega_o^2 x = 0$$

Change variables

Assumption: Form of solution is a complex exponential

$$x(t) = Ae^{i(\omega t + \delta)}$$

<u>Trigonometry review</u> ⇒ Sinusoids

Sinusoid has 3 basic properties:

- i. Amplitude height
- ii. Frequency = 1/T [Hz]
- iii. Phase tells you where the peak is (needs a reference)

⇒ Phase reveals timing information

Motivation for complex solution:

$$a + ib = Ae^{i\theta}$$
$$= A(\cos\theta + i\sin\theta)$$

Cartesian Form

$$a = A\cos(\theta)$$

$$b = A\sin\left(\theta\right)$$

Polar Form

$$A = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1} \left(\frac{b}{a} \right)$$

⇒ Complex solution contains both magnitude and phase information

Case 3: Damped undriven HO

$$\ddot{x} + \gamma \dot{x} + \omega_o^2 x = 0$$

$$x(t) = Ae^{i(\omega t + \delta)}$$

$$x(t) = Ae^{-\gamma t/2} e^{i(\omega t + \alpha)}$$

$$\omega^2 = \omega_o^2 - \frac{\gamma^2}{4}$$

[A and α are constants of integration, depending upon initial conditions]

(slightly lower frequency of oscillation due to damping)

⇒ Damping causes energy loss from system

$$m\ddot{x} = -kx - m\gamma\dot{x} + F_0\cos\omega t$$

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t$$

General (strictly real) solution: $x(t) = x_1(t) + x_2(t)$

$$x(t) = x_0 \exp\left(-\frac{\gamma t}{2}\right) \cos(\omega_d t + \varphi) + A\cos(\omega t - \theta)$$

First part (i.e., x_1) is just a decaying oscillation at the "free" (i.e., undriven) frequency:

$$\omega_{\rm d} = \omega_0 \left[1 - (\gamma/2\omega_0)^2 \right]^{1/2}$$

Second part (i.e., x_2) is the steady-state response and a bit easier to derive via complex exponentials

$$x_2(t) = A\cos\omega t\cos\theta + A\sin\omega t\sin\theta$$

Case 4: Damped driven HO

$$\ddot{x} + \gamma \dot{x} + \omega_o^2 x = \frac{F_o}{m} e^{i\omega t}$$

Sinusoidal driving force at frequency ω

Assumption: Ignore onset behavior and that system oscillates at frequency ω

$$x(t) = Ae^{-i(\omega t + \delta)}$$

Assumed form of solution

$$A(\omega) = \frac{F_o/m}{[(\omega_o^2 - \omega^2)^2 + (\gamma \omega)^2]^{1/2}}$$

(magnitude)

$$\delta(\omega) = \arctan\left(\frac{\gamma\omega}{\omega^2 - \omega_o^2}\right)$$

(phase)

Case 4: Damped driven HO

$$A(\omega) = \frac{F_o/m}{[(\omega_o^2 - \omega^2)^2 + (\gamma\omega)^2]^{1/2}}$$

$$\delta(\omega) = \arctan\left(\frac{\gamma\omega}{\omega^2 - \omega_o^2}\right)$$

⇒ Second-order oscillator behaves as as band-pass filter

Case 4: Damped driven HO

Three different key frequencies at play:

1. driving frequency (
$$\omega$$
)

$$m\ddot{x} = -kx - m\gamma\dot{x} + F_0\cos\omega t$$

2. free damped frequency ($\omega_{
m d}$)

$$\omega_{\rm d} = \omega_0 \sqrt{1 - \frac{\gamma^2}{4\omega_0^2}}$$

3. resonant frequency ($\omega_{\rm m}$)

$$\omega_{\rm m} = \omega_0 \sqrt{1 - \frac{\gamma^2}{2\omega_0^2}}$$

Second Order System (resonant frequency ω_m)

 \Rightarrow External driving force at frequency ω

$$x(t) = A(\infty) \left[1 - e^{(-t/\tau)}\right]$$

$$\tau = 1/\gamma = Q / \omega_o$$

Fig. 4-9 (a) Amplitude as function of driving frequency for different values of Q,

60°

40°

20°

0.6

0.8

1.0

(b)

1.2

 $A(\omega)$

different values of Q, assuming driving force of constant magnitude but variable frequency. (b) Phase difference δ as function of driving frequency for different values of Q.

Q is the 'quality factor'

$$\ddot{x} + \gamma \dot{x} + \omega_o^2 x = \frac{F_o}{m} e^{i\omega t}$$

$$Q = \omega_o / \gamma$$

→ Phase information tells us something about the damping

$$\ddot{x} + \gamma \dot{x} + \omega_o^2 x = \frac{F_o}{m} e^{i\omega t}$$

 $N \equiv f_0$ * phase slope (group delay)

 $N \propto 1/\gamma$

⇒ Characterizing phase slope near resonance provides measure of damping

<u>Impulse response</u>

- Intuitively defined in two different (but equivalent) ways:
 - 1. Time response of 'system' when subjected to an impulse (e.g., striking a bell w/ a hammer)
 - 2. Fourier transform of resulting response

(e.g., spectrum of bell ringing)

ex. Harmonic oscillator

(Important) Note: The Fourier transform of the impulse response is called the *transfer function*