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http://cornejo-sanchez.deviantart.com/art/Einstein-Mosaic-227306670

Ø ‘Photo mosaics’ use images as an 
underlying set of ‘basis functions’

Ø Note that we could just as easily 
choose a different set of basis 
images....

... and it’s not too hard to 
imagine that some choices 
might be better than others!

à Similar idea underlies the notion of 
Fourier analysis, the choice of basis 
functions being sinusoids



Ø Backbone of modern signal processing and 

linear systems theory

Basic idea:  Represent �signal� as a sum of sinusoids

Joseph Fourier (1768-1830)

Fourier analysis

Ø Deep history throughout mathematics, physics, 

engineering, biology, ..... 

Ø Builds off the basic idea of a Taylor series (which 

posits we can describe a function as an infinite series of 

polynomials)

Ø Lays at foundation of many modern methodologies in 

medical imaging (e.g., MRI, CT scans) 

Note: We focus on 1-D here for 

clarity, but these ideas 

generalize to higher dimensions 

(e.g., 2-D for images) 



Key idea: Fourier transform

Ø Allows one to go from a time domain description (e.g., recorded signal) to a 
spectral description (i.e., what frequency components make up that signal)

§ One axis is time, 
the other is 
frequency

§ These two are 
fundamentally 
tied together 



Intuitive connection back to Taylor series:

Taylor series à Expand as a (infinite) sum of polynomials

Different Idea: Fourier series à Expand as a (infinite) sum of sinusoids

Fourier series



wikipedia (Taylor series)

“The exponential function ex (in blue), 
and the sum of the first n+1 terms of 
its Taylor series at 0 (in red).”
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 7 - noise (Gaussian distribution)

Time domain Spectral domain
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Ø Magnitude is flat just like an impulse (i.e., flat), but the phase is random



Fourier transforms of basic (1-D) waveforms
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Impulse Noise

à Remarkable that the magnitudes are identical (more or less) 
between two signals with such different properties. The key 
difference here is the phase: Timing is a critical piece of the puzzle!



Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 6 - chirp (flat mag.)

Time domain Spectral domain

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [ms]

Si
gn

al

Time Waveform

Hard to see on this timescale, but frequency is changing 
(increasing) with time
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 8 - exponentially decaying sinusoid

Time domain Spectral domain
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Ø This seems to look familiar....



Ø Intuitively defined in two different (but equivalent) ways:

1. Time response of ‘system’ when subjected to an impulse 
(e.g., striking a bell w/ a hammer)

2. Fourier transform of resulting response
(e.g., spectrum of bell ringing)

ex. Harmonic oscillator Temporal
impulse response

Spectral
impulse response

Impulse response

(Important) Note: The Fourier transform of the 
impulse response is called the transfer function



Superposition & Linearity

à When dealing with linear oscillators (or linear systems in general), superposition 
takes a domineering position in how we approach analysis and modeling



Weiss (1996)

Tangent: Superposition & Linearity (beyond the HO)

Ø First solved by William Thomson (aka Lord Kelvin) in ~1855

Ø Motivated by Atlantic submarine cable for intercontinental telegraphy

Ø Directly  applicable to transmission lines and BNC cables 

"cable model"



Weiss (1996)





à Axon behaves in fashion 
similar to a leaky submarine 
cable

Tangent: Superposition & Linearity (beyond the HO)



Tangent: Superposition & Linearity (beyond the HO)

Linear PDE



Figure 3.19

Linearity  à Superpostion

Tangent: Superposition & Linearity (beyond the HO)



“Electronic distance” “Temporal integration”

à Key considerations with regard to synapses (i.e., inter-neuron communication)



Spatial integration
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wikipedia - Pendulum

Gravity-driven pendulumNonlinear oscillations: Pendulum
“first pendulum clock” re 
Christiaan Huygens

d2✓

dt2
= ✓̈ = �g

`
sin (✓)



Additional slides beyond are for general reference....



General properties of Fourier transforms

Devries (1994) Kutz (2012)

Ø Don’t be confused by different notations (there are a lot out there!)

Ø Keep in mind that the Fourier transform is defined over the interval [-∞, ∞], 
though most ‘signals’ we deal with computationally are finite (e.g., [-L,L])

(the resolution here is an implicit assumption of a ‘periodic boundary condition’; we’ll come back to this)

Ø Connection back to previous topics covered:



General properties of Fourier transforms

Ø The Fourier transform is a linear process

Devries (1994)

à Linearity is a seemingly innocuous property that has vast implications... (we’ll see some in later lectures)

Ø Another key property is that of scaling:
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General properties of Fourier transforms

Devries (1994)

Ø A handful of other properties arise (e.g., shifting, time reversal), which give rise to 
numerous symmetries that can be summarized as follows:

Ø Another key feature is that of derivatives:

Integrating by parts has:

à The first term on the right-side must be zero



Aside: Using Fourier transforms to solve linear differential equations Note: This topic is a bit 

beyond the scope of 2030, 

but is worth pointing out 

here for future reference

Kutz (2012)

[Kutz notation]

Basic idea is generalizable 

to higher order derivatives

Consider the linear, non-autonomous ODE:

Take Fourier transform of both 

sides and work through:

We end up with an integral solution that 

can than either be evaluated analytically 

or numerically

à Other avenues deal with PDEs and integrals, with many practical 

implications in physics (e.g., delta functions in quantum mechanics, 

Parseval's identity), though such is beyond our scope here




