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Simply match up the pictures to the words. There’s a
particular sort of person that would find this puzzle very
easy.
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> ‘Photo mosaics’ use images as an
underlying set of ‘basis functions’

> Note that we could just as easily
choose a different set of basis
images....

... and it’s not too hard to
imagine that some choices
might be better than others!
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agp .
t) = — + E a,, cosnt + E b,, sin nt
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—> Similar idea underlies the notion of
Fourier analysis, the choice of basis
functions being sinusoids

http://cornejo-sanchez.deviantart.com/art/Einstein-Mosaic-227306670



Fourier analysis

» Deep history throughout mathematics, physics,
engineering, biology, .....

» Backbone of modern signal processing and
linear systems theory

» Lays at foundation of many modern methodologies in
medical imaging (e.g., MRI, CT scans)

» Builds off the basic idea of a Taylor series (which
posits we can describe a function as an infinite series of

polynomials)

Basic idea: Represent ‘signal’ as a sum of sinusoids

Joseph Fourier (1768-1830)

Note: We focus on 1-D here for
clarity, but these ideas
generalize to higher dimensions
(e.g., 2-D for images)



Key idea: Fourier transform

> Allows one to go from a time domain description (e.g., recorded signal) to a
spectral description (i.e., what frequency components make up that signal)
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One axis is time,
the other is
frequency

These two are
fundamentally
tied together




Fourier series

Intuitive connection back to Taylor series:

y(@1 + Az) =~ y(x1) + Z 71' Zz (Ax)". (D.2)
"z 5 () (g
F(&) = F@o) + £ @)@ —z0) + 0 o — gy 4o T g gy

Taylor series = Expand as a (infinite) sum of polynomials

Different Idea: Fourier series = Expand as a (infinite) sum of sinusoids




“The exponential function e~ (in blue),
and the sum of the first n+1 terms of
its Taylor series at O (in red).”
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wikipedia (Taylor series)
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Fourier series

f(t) = ao + ay sin (wt) + by cos (wt)+
+ ag sin (2wt) + bs cos (2wt )+
+ ag sin (3wt) + bs cos (3wt) + - - -

— Ag + A;sin (wt -+ ¢1)
+ Ag sin (2wt + ¢2)
+ Az sin (3wt + ¢3) + - - -

= i A, sin (nwt + ¢n,)

n=0
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. B einwt
— E n
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where B, € C, 1 = v —1
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a, = '1_*.[—1'/2 f(t) cos(nwt)dt n=0,12,...
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Complex #s are much
more compact and
easier to deal with



e.g., Square "Waves"
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 7 - noise (Gaussian distribution)
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Time Waveform Spectrum
1 T T T T T T T T -44 I

0.8 -445| -

Magnitude [dB]

5 10 15 20 25

10

Phase [cycles]
o

—10}F

g I I I I I I I I I -20 . ‘ : ‘
0 5 10 15 20 25

Frequency [kHz]

Time [ms]

> Magnitude is flat just like an impulse (i.e., flat), but the phase is random



Fourier transforms of basic (1-D) waveforms
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- Remarkable that the magnitudes are identical (more or less)
between two signals with such different properties. The key
difference here is the phase: Timing is a critical piece of the puzzle!
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Signal

Fourier transforms of basic (1-D) waveforms
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Hard to see on this timescale, but frequency is changing
(increasing) with time
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 8 - exponentially decaying sinusoid
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Impulse response

> Intuitively defined in two different (but equivalent) ways:

1. Time response of ‘system’ when subjected to an impulse
(e.g., striking a bell w/ a hammer)

2. Fourier transform of resulting response

(e.g., spectrum of bell ringing) Spectral

impulse response

. . Amplitud
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Phase
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(Important) Note: The Fourier transform of the
impulse response is called the transfer function




Superposition & Linearity

- When dealing with linear oscillators (or linear systems in general), superposition
takes a domineering position in how we approach analysis and modeling



Tangent: Superposition & Linearity (beyond the HO)
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"cable model"

> First solved by William Thomson (aka Lord Kelvin) in ~1855
> Motivated by Atlantic submarine cable for intercontinental telegraphy

> Directly applicable to transmission lines and BNC cables

Weiss (1996)
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Tangent: Superposition & Linearity (beyond the HO)
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Tangent: Superposition & Linearity (beyond the HO)

Cable Equation Linear PDE

Let v,,(2,t) = Viu(z,t) — VO and |v,(z,t)] << |V?| :
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Tangent: Superposition & Linearity (beyond the HO)
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“Electronic distance” “Temporal integration”

> Key considerations with regard to synapses (i.e., inter-neuron communication)



Trigger
level

Figure 3.36 o
Spatial integration



Santiago Ramén y Cajal (1852-1934)

In Short: Superposition plays a key role in how your
brain works as a "network" to process information




Nonlinear oscillations: Pendulum Gravity-driven pendulum

“first pendulum clock” re
Christiaan Huygens

mg sin @

wikipedia - Pendulum



Additional slides beyond are for general reference....



General properties of Fourier transforms

_ L [ iwt L[ ik
ft) = m/_wg(w)e dw F(k) = \/T_n/_ooe f(x)dx
g(w) = / F(t)e ™“tdt flx) = i / e* F(k)dk .
Devries (1994) Kutz (2012)

> Don’t be confused by different notations (there are a lot out there!)

> Keep in mind that the Fourier transform is defined over the interval [-oo, o],
though most ‘signals” we deal with computationally are finite (e.g., [-L,L])

(the resolution here is an implicit assumption of a ‘periodic boundary condition’; we’ll come back to this)

> Connection back to previous topics covered:

Further, the kernel of the transform, exp(4-ikx), describes oscil-
latory behavior. Thus the Fourier transform is essentially an eigenfunction expansion over all
continuous wavenumbers k. And once we are on a finite domain x € [—L, L], the continuous ei-

genfunction expansion becomes a discrete sum of eigenfunctions and associated wavenumbers
(eigenvalues).




General properties of Fourier transforms

> The Fourier transform is a linear process

That is, if f; (t) and f2(t) are two functions having Fourier transforms
91(w) and g>(w), then the Fourier transform of f;(t) + f2(t) is

9) = 7= [ 1h0)+ Falt)] e
1 > —iwt 1 > —twt
= 72—-1;/_00 fi(t)e™™ dt + -\/-2—;/;00 fa(t)e™*" dt

= g1(w) + g2(w).

—> Linearity is a seemingly innocuous property that has vast implications... (we'll see some in later lectures)

Flf(at)] =

> Another key property is that of scaling: |

g()

Fg(Bw)] = = f ( )

8]

Devries (1994)



General properties of Fourier transforms

> Due to this scaling, as f(7) gets

00 1 w
f(t)= #/_ g(w)e*tdw }-[f(at)] = Hg(a)

1 * —iw
narrower (i.e., more localized in time), 9(w) = Vor /_oo f(t)e “dt -1 [g(ﬁw)] |ﬂ| f( )
g(w) gets broader (i.e., more spread

out across frequency)
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in large part, the role of the additional functions is

to cancel the oscillations. Thus, the more localized a function is in time, the
more delocalized it is in frequency.

This is more than a casual observation — it’s a fundamental property
of Fourier transforms, and has direct physical consequences. Usually stated
in terms of position and momentum rather than time and frequency, the state-
ment is that the product of the width of the function, Az, and the width of
the transform of the function, Ap, is always greater than or equal to a specific
nonzero value, h — Heisenberg’s uncertainty principle.

Devries (1994)



General properties of Fourier transforms

> A handful of other properties arise (e.g., shifting, time reversal), which give rise to
numerous symmetries that can be summarized as follows:

If f(t) is real, then Rg(w) is even and Sg(w) is odd;
if f(t) is imaginary, then Rg(w) is odd and Yg(w) is even;
if f(t) is even, then g(w) is even,
if f(t) is odd, then g(w) is odd;
if f(t) is real and even, then g(w) is real and even;
if f(¢) is real and odd, then g(w) is imaginary and odd;
if f(¢) is imaginary and even, then g(w) is imaginary and even;
if f(t) is imaginary and odd, then g(w) is real and odd.
. o 1 [ .

> Another key feat that of d tives: "(t)] = — "(t)e Wt

nother key feature is that of derivatives FIf' (b)) \/2_7r/ fl(t)e ™t dt
Integrating by parts has:

FIf(@®)] = i FO)I% + /°° f(t)e ™" dt ' '
= Van ) Wl T o [ TE FIf(#)] = iwg(w)

- The first term on the right-side must be zero

Devries (1994)



Note: This topic is a bit
beyond the scope of 2030,
but is worth pointing out
here for future reference

[Kutz notation] f[f, (t)] = ng(w)

— P
(n) — (i1 \1 Basic idea is generalizable
f T (Zk) f to higher order derivatives

Aside: Using Fourier transforms to solve linear differential equations

Consider the linear, non-autonomous ODE: y// — a)z)/ = —f(X) X € [—OO, OO]

" 2~_ _ 7 ~
— a) _—
Take Fourier transform of both )2/ 2y —~ 3/\ f
sides and work through: —k j/\ —w 5,\ — — W
+ w

(I +o™y=f

We end up with an integral solution that y(x) —
can than either be evaluated analytically /27[ —60

or numerically

—> Other avenues deal with PDEs and integrals, with many practical
implications in physics (e.g., delta functions in quantum mechanics,
Parseval's identity), though such is beyond our scope here

Kutz (2012)





