PHYS 2010 (W20)
 Classical Mechanics

2020.03.10
 Relevant reading:
 Knudsen \& Hjorth: X

Christopher Bergevin
York University, Dept. of Physics \& Astronomy
Office: Petrie 240 Lab: Farq 103
cberge@yorku.ca
Ref.s:
Knudsen \& Hjorth (2000), Fowles \& Cassidy (2005)

Simply match up the pictures to the words. There's a particular sort of person that would find this puzzle very easy.

LIT

DENT
OR

BRAS

Bed

Arm

> 'Photo mosaics' use images as an underlying set of 'basis functions'
> Note that we could just as easily choose a different set of basis images....
... and it's not too hard to imagine that some choices might be better than others!

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t
$$

\rightarrow Similar idea underlies the notion of Fourier analysis, the choice of basis functions being sinusoids

Fourier analysis

> Deep history throughout mathematics, physics, engineering, biology,
> Backbone of modern signal processing and linear systems theory

Lays at foundation of many modern methodologies in medical imaging (e.g., MRI, CT scans)

Joseph Fourier (1768-1830)
> Builds off the basic idea of a Taylor series (which posits we can describe a function as an infinite series of polynomials)

Basic idea: Represent 'signal' as a sum of sinusoids
Note: We focus on 1-D here for clarity, but these ideas generalize to higher dimensions (e.g., 2-D for images)

Key idea: Fourier transform
> Allows one to go from a time domain description (e.g., recorded signal) to a spectral description (i.e., what frequency components make up that signal)

Fourier series

Intuitive connection back to Taylor series:

$$
\begin{align*}
& y\left(x_{1}+\Delta x\right) \approx y\left(x_{1}\right)+\left.\sum_{n=1}^{N} \frac{1}{n!} \frac{d^{n} y}{d x^{n}}\right|_{x_{1}}(\Delta x)^{n} . \quad(\mathrm{D} .2) \tag{D.2}\\
& f(x)=f\left(x_{o}\right)+f^{\prime}\left(x_{o}\right)\left(x-x_{o}\right)+\frac{f^{\prime \prime}\left(x_{o}\right)}{2!}\left(x-x_{o}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{o}\right)}{n!}\left(x-x_{o}\right)^{n}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{o}\right)}{n!}\left(x-x_{o}\right)^{n}
\end{align*}
$$

Taylor series \rightarrow Expand as a (infinite) sum of polynomials

Different Idea: Fourier series \rightarrow Expand as a (infinite) sum of sinusoids
"The exponential function e^{x} (in blue), and the sum of the first $n+1$ terms of its Taylor series at 0 (in red)."

Fourier series

$$
\begin{gathered}
f(t)=a_{o}+a_{1} \sin (\omega t)+b_{1} \cos (\omega t)+ \\
\quad+a_{2} \sin (2 \omega t)+b_{2} \cos (2 \omega t)+ \\
+a_{3} \sin (3 \omega t)+b_{3} \cos (3 \omega t)+\cdots \\
=A_{0}+A_{1} \sin \left(\omega t+\phi_{1}\right) \\
\quad+A_{2} \sin \left(2 \omega t+\phi_{2}\right) \\
+ \\
A_{3} \sin \left(3 \omega t+\phi_{3}\right)+\cdots \\
= \\
\sum_{n=0}^{\infty} A_{n} \sin \left(n \omega t+\phi_{n}\right)
\end{gathered}
$$

$$
a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos (n \omega t) d t \quad n=0,1,2, \ldots
$$

$$
b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin (n \omega t) d t \quad n=1,2, \ldots
$$

$$
=\sum_{n=0}^{\infty} B_{n} e^{i n \omega t} \quad \text { where } B_{n} \in \mathbb{C}, i=\sqrt{-1}
$$

e.g., Square "Waves"


```
stimT= 7 - noise (Gaussian distribution)
```

Time domain

Spectral domain

> Magnitude is flat just like an impulse (i.e., flat), but the phase is random

Fourier transforms of basic (1-D) waveforms

Noise

\rightarrow Remarkable that the magnitudes are identical (more or less) between two signals with such different properties. The key difference here is the phase: Timing is a critical piece of the puzzle!


```
stimT= 6 - chirp (flat mag.)
```

Time domain

Spectral domain

Hard to see on this timescale, but frequency is changing
(increasing) with time

```
stimT= 8 - exponentially decaying sinusoid
```

Time domain

Time Waveform

Spectral domain

> This seems to look familiar....
> Intuitively defined in two different (but equivalent) ways:

1. Time response of 'system' when subjected to an impulse
(e.g., striking a bell w/ a hammer)
2. Fourier transform of resulting response
(e.g., spectrum of bell ringing)
ex. Harmonic oscillator

(Important) Note: The Fourier transform of the impulse response is called the transfer function

Superposition \& Linearity

\rightarrow When dealing with linear oscillators (or linear systems in general), superposition takes a domineering position in how we approach analysis and modeling

Tangent: Superposition \& Linearity (beyond the HO)

Figure 3.8

"cable model"

> First solved by William Thomson (aka Lord Kelvin) in ~1855
> Motivated by Atlantic submarine cable for intercontinental telegraphy
> Directly applicable to transmission lines and BNC cables

Figure 1.22

Tangent: Superposition \& Linearity (beyond the HO)

Figure 3.8
\rightarrow Axon behaves in fashion similar to a leaky submarine cable

Figure 3.9

Tangent: Superposition \& Linearity (beyond the HO)

Cable Equation

Linear PDE

Let $v_{m}(z, t)=V_{m}(z, t)-V_{m}^{o}$ and $\left|v_{m}(z, t)\right| \ll\left|V_{m}^{o}\right|$:

$$
v_{m}(z, t)+\tau_{M} \frac{\partial v_{m}(z, t)}{\partial t}-\lambda_{C}^{2} \frac{\partial^{2} v_{m}(z, t)}{\partial z^{2}}=r_{o} \lambda_{C}^{2} K_{e}(z, t)
$$

Figure 3.8

Tangent: Superposition \& Linearity (beyond the HO)

Figure 3.19

Figure 3.34

Figure 3.35
"Electronic distance"
"Temporal integration"
\rightarrow Key considerations with regard to synapses (i.e., inter-neuron communication)

Figure 3.36

Santiago Ramón y Cajal (1852-1934)

In Short: Superposition plays a key role in how your brain works as a "network" to process information

"first pendulum clock" re Christiaan Huygens

Additional slides beyond are for general reference....

General properties of Fourier transforms

$$
\begin{aligned}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(\omega) e^{i \omega t} d \omega & F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x \\
g(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t & f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} F(k) d k
\end{aligned}
$$

> Don't be confused by different notations (there are a lot out there!)
> Keep in mind that the Fourier transform is defined over the interval $[-\infty, \infty]$, though most 'signals' we deal with computationally are finite (e.g., $[-L, L]$) (the resolution here is an implicit assumption of a 'periodic boundary condition'; we'll come back to this)
> Connection back to previous topics covered:
Further, the kernel of the transform, $\exp (\pm i k x)$, describes oscillatory behavior. Thus the Fourier transform is essentially an eigenfunction expansion over all continuous wavenumbers k. And once we are on a finite domain $x \in[-L, L]$, the continuous eigenfunction expansion becomes a discrete sum of eigenfunctions and associated wavenumbers (eigenvalues).
> The Fourier transform is a linear process
That is, if $f_{1}(t)$ and $f_{2}(t)$ are two functions having Fourier transforms $g_{1}(\omega)$ and $g_{2}(\omega)$, then the Fourier transform of $f_{1}(t)+f_{2}(t)$ is

$$
\begin{aligned}
g(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[f_{1}(t)+f_{2}(t)\right] e^{-i \omega t} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{1}(t) e^{-i \omega t} d t+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(t) e^{-i \omega t} d t \\
& =g_{1}(\omega)+g_{2}(\omega)
\end{aligned}
$$

\rightarrow Linearity is a seemingly innocuous property that has vast implications... (we'll see some in later lectures)
> Another key property is that of scaling:

$$
\begin{aligned}
& \mathcal{F}[f(\alpha t)]=\frac{1}{|\alpha|} g\left(\frac{\omega}{\alpha}\right) \\
& \mathcal{F}^{-1}[g(\beta \omega)]=\frac{1}{|\beta|} f\left(\frac{t}{\beta}\right)
\end{aligned}
$$

General properties of Fourier transforms

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(\omega) e^{i \omega t} d \omega \quad \mathcal{F}[f(\alpha t)]=\frac{1}{|\alpha|} g\left(\frac{\omega}{\alpha}\right)
$$

> Due to this scaling, as $f(t)$ gets
narrower (i.e., more localized in time), $g(\omega)$ gets broader (i.e., more spread out across frequency)

$$
g(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \quad \mathcal{F}^{-1}[g(\beta \omega)]=\frac{1}{|\beta|} f\left(\frac{t}{\beta}\right)
$$

in large part, the role of the additional functions is to cancel the oscillations. Thus, the more localized a function is in time, the more delocalized it is in frequency.

This is more than a casual observation - it's a fundamental property of Fourier transforms, and has direct physical consequences. Usually stated in terms of position and momentum rather than time and frequency, the statement is that the product of the width of the function, Δx, and the width of the transform of the function, Δp, is always greater than or equal to a specific nonzero value, \hbar - Heisenberg's uncertainty principle.
> A handful of other properties arise (e.g., shifting, time reversal), which give rise to numerous symmetries that can be summarized as follows:

If $f(t)$ is real,
if $f(t)$ is imaginary,
if $f(t)$ is even,
if $f(t)$ is odd,
if $f(t)$ is real and even,
if $f(t)$ is real and odd,
if $f(t)$ is imaginary and even,
if $f(t)$ is imaginary and odd,
then $\Re g(\omega)$ is even and $\Im g(\omega)$ is odd; then $\Re g(\omega)$ is odd and $\Im g(\omega)$ is even; then $g(\omega)$ is even; then $g(\omega)$ is odd; then $g(\omega)$ is real and even; then $g(\omega)$ is imaginary and odd; then $g(\omega)$ is imaginary and even; then $g(\omega)$ is real and odd.
> Another key feature is that of derivatives: $\quad \mathcal{F}\left[f^{\prime}(t)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(t) e^{-i \omega t} d t$
Integrating by parts has:
$\mathcal{F}\left[f^{\prime}(t)\right]=\left.\frac{e^{-i \omega t}}{\sqrt{2 \pi}} f(t)\right|_{-\infty} ^{\infty}+\frac{i \omega}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t$

$$
\mathcal{F}\left[f^{\prime}(t)\right]=i \omega g(\omega)
$$

Aside: Using Fourier transforms to solve linear differential equations

$\widehat{f(n)}=(i k)^{n \widehat{f}} \quad \begin{aligned} & \text { [Kutz notation] } \\ & \text { Basic idea is generalizable } \\ & \text { to higher order derivatives }\end{aligned}$

Consider the linear, non-autonomous ODE:

$$
y^{\prime \prime}-\omega^{2} y=-f(x) \quad x \in[-\infty, \infty]
$$

$$
\begin{aligned}
\widehat{y^{\prime \prime}}-\omega^{2} \widehat{y} & =-\widehat{f} \\
-k^{2} \widehat{y}-\omega^{2} \widehat{y} & =-\widehat{f} \\
\left(k^{2}+\omega^{2}\right) \widehat{y} & =\widehat{f}
\end{aligned}
$$

$$
\widehat{y}=\frac{\widehat{f}}{k^{2}+\omega^{2}}
$$

We end up with an integral solution that can than either be evaluated analytically or numerically

$$
y(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \frac{\widehat{f}}{k^{2}+\omega^{2}} d k
$$

\rightarrow Other avenues deal with PDEs and integrals, with many practical implications in physics (e.g., delta functions in quantum mechanics, Parseval's identity), though such is beyond our scope here

