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Recall: “Modeling” & Differential equations (DEs)

Harmonic oscillator

.o . 9
—> A very common/useful tool in our toolbox.... T+ YC+w, T = 0

Wave equation Diffusion equation
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Laplace’s equation Maxwell’s equations
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Aside: SIR model (re Covid-19) York University

Centre for Disease Modelling (Rt

SIR model
(‘compartmental’ model in epidemiology)

Blue=Susceptible
Green=Infected
Red=Recovered

dsS

— = —pIS @
dt §
dl iy
dR

= ~]

praa

Time

Another term for

wikipedia (re Compartmental models in epidemiology)




Aside: SIS model (re Covid-19)

( Susceptible J< > -

Blue=Susceptible
Green=Infected

# of people

Regardless of the details, to first
order, initial change patterns

are exponential.... Time

wikipedia (re Compartmental models in epidemiology)



Aside: SIR model + Diffusion dS

— = —pIS
dt
dc D 0%c
dl ~ = Vs
— = BIS — I ot Ox?
Reaction-Diffusion equation dt & 7
dc 5 dR
§=f(c)+DV c, %—WI

f(c) describes “reaction kinetics”

—> Pattern formation....

Murray (2003)



Aside: Reaction-Diffusion (or How the leopard got its spots)

0 0
a—‘t‘ = yf(u, v) + Vu, 3—‘: = yg(u, v) +dV?v

fu,v)=a—u—h(u,v), gu,v)=ab—v)—h({u,v)

e D B B = M

a)
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h(u,v) =

(c)

(d)

Murray (2003)



Nonlinear oscillations: Pendulum Gravity-driven pendulum

“first pendulum clock” re
Christiaan Huygens

d?0 . g .
w — 9 — —ZSIH(H)

wikipedia - Pendulum



Nonlinear oscillations: Pendulum

Pivot

There’s no torque

from the tension
~~because it acts
along the line to
the pivot.

Gravitational force
produces a torque

Rotational version of

mgL siné. (we'll return to this soon...)
T = la.
Restoring "force" et Vi
(i.e., torque): & = mgL sin 6
2
Resulting equation )i a0 = —mgL sin O

of motion:

di

Visual depiction of 1%t order

approx. of Taylor series
v 0
4 At small angles,
0 and sinf
are nearly
g ?qual. ginh
0.5 At larg-'er angles
this approximation
., fails.
| I |
¢ 0.5 1 ™
2
0 (radians)
FIGURE 13.11 For & much less than
1 radian, sin 6 and 6 are nearly equal.
"Small angles" = SHO
d*0
I— = —mgL#
2
dt

Wolfson (2007)



Nonlinear oscillations: Pendulum

Moment of inertia
(for a point mass at a distance L

2 from the axis of rotation)
d-0 . - .
I—d—'z" = —mgL sin6 I = mL
4
Note: We will return soon to rotational motions

\ : I (incl. concepts such as moment of inertia)
Pendulum's period of oscillation:

/mgL \/E
o = — =
mlL? L

- Remarkably by virtue of being a "rotational
problem", mass m does not explicitly play a role!

Note: Dimensional d29
analysis would have .
led to the same p— 9 p— —g sin (9)

conclusion! dtQ e



Nonlinear oscillations: Pendulum Gravity-driven pendulum

Eqn. of motion
d26) a g (no damping)
—— =0 =—=5sin(0)
dt / |
Note: Presence of nonlinear term greatly
complicates mathematical analysis

Phase space

> o~

Consider that there are two equilibria w/ differing stability....

wikipedia - Pendulum (mathematics)



Nonlinear oscillations: Double pendulum

> Classic example of a relatively simple mechanical system, yet a nonlinear one
that exhibits strikingly complex (e.g., chaotic) dynamics

L LTSI

Note: Despite being nonlinear, this system is
conservative and thus much more amenable to

mathematical analysis via Lagrangian mechanics

wikipedia (double pendulum)



Nonlinear oscillations: Double pendulum

Three double pendulums with near identical
initial conditions diverge over time
displaying the chaotic nature of the system.

Trajectories of a double pendulum

—> Helps motivate the notion of Lyapunov exponents...

wikipedia (double pendulum)



Nonlinear oscillations: van der Pol van der Pol oscillator

> Nonlinear version of a harmonic oscillator

i=—-x—elx® -z

> Originally proposed to study cardiac dynamics and vacuum tubes

> Nonlinear and exhibits relatively complex behavior, thus has proven a popular
model for study in mathematics, physics, and biology

> Physically, how does this differ from a linear damped harmonic oscillator?

Small displacements = Negative damping

Limit cycles
(i.e., non-conservative system)



Limit cycles

2.5

1.5

initial non-zero
displacement 05

function

outl(2)=

[outl] = VDPfunction(t,y,flag,P)

. position x
. velocity dx/dt

y(2)

.
14

VDPode45EX.m

(P.mu/P.m)*(l-y(1l)"2)*y(2) - (P.k/P.m)*y(l) + (P.A/P.m)*sin(P.wr*t);

outl= outl';

Q

% wants output as a column vector

100



X(t) [m]

VDPode45EX.m

o Limit cycles

—> Even though there is damping, the system
oscillates by itself in a stable fashion

25

Phase space

dx/dt [m/s]
o

I
o
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Tangent: Bifurcation analysis

> In the context of dynamical systems, consider bifurcation analysis as a means to
assess how the overall (‘gualitative’) behavior of a system depends upon the

parameters (i.e., the ‘constants’)

.0 . 2

€T r+w-xr=0
— Consider the damped, undriven harmonic T i T o
oscillator with a nonzero initial condition

If y=0, we will have simple
harmonic (i.e., periodic)
motion If >0, we will have damped

oscillatory motion
(assuming v is not too big!)

And if y<0, then what?

» Clearly there is a change in the behavior of the system about y=0 = We call this
a bifurcation



Tangent: Bifurcation analysis

> So what about a nonlinear oscillator? i=—-z—¢e(x?-1)z

If €=0, we will have simple
harmonic (i.e., periodic)
motion

If >0, we will have
stable limit cycle

dx/dt [m/s]

> Physically, a very different type of behavior emerges when € goes from
0 to a positive value (this is actually called a supercritical Hopf bifurcation)

Hopf bifurcation - “... a local bifurcation in which a fixed point of a dynamical system loses stability as a pair of
complex conjugate eigenvalues of the linearization around the fixed point cross the imaginary axis of the complex
plane. Under reasonably generic assumptions about the dynamical system, we can expect to see a small-

amplitude limit cycle branching from the fixed point.”

wikipedia (Hopf bifurcation)



Aside: "Bifurcation"?



Aside: "Bifurcation"?

> In the most general sense, a ‘bifurcation’ describes how something ‘splits’

> In dynamical systems theory, bifurcation analysis is a powerful means to study
nonlinear systems

=  Minimum complexity?

= Bifurcation diagram?

wikipedia (~1/3 of the way down for ‘chaos theory’)



Aside: "Bifurcation" & Period doubling

> Consider the "logistic equation" (seemingly simple 15t order nonlinear ODE)

Logistic eqn. (continuous) Logistic egn. (discrete)
dP P
P _yp(1-L Poi1 = kPo(1 = P/ L)
dt L
> We'll simplify slightly (but keep real-valued): Lnt+l = xnr(l — xn)

> Relatively innocuous equation, right?

—> Relatively easy to numerically perform a
bifurcation analysis (with respect to ») and observe
how ‘period doubling” emerges, commonly
pointed towards as a characteristic of chaos

wikipedia (chaos theory)



EXlogisticBIF.m

clear; figure(l); clf; hold on;

range= [2 4]; % min and max values to compute bifurcation diagram over [2 4]
Nr= 200; % # of steps over range [100]
x0= 0.1; % starting x value [0.1]

Nsettl= 50; % # of runs allowed for 'settling' [50]
Nit= 100; # of iterations to plot for a given value of r [200]
rPlot= 3.5 for 'timecourse' plot, specify associated r value (must be inside range!)

~e

rmin= range(l); rmax= range(2);
% loop through each r value
for nn=1:Nr

r(nn)= rmin + nn*(rmax-rmin)/Nr; % update r

x= x0; % reset to IC

xXS(1)= x; % store first point

indx=2; % reset indexer (for 2nd iterate)

for mm=0:Nsettl+Nit % loop through the iterations of the map
X= r(nn)*x*(1l-x); % deal with mapping
xS(nn,indx)= x; % store values
indx= indx+1; % update indexer

end

% plot points for a given iteration *past* the settling time
plot(r(nn)*ones(Nit+l),xS(nn,Nsettl:Nsettl+Nit), 'k.")

end
xlabel('r'); ylabel('x n')
title('Bifurcation Diagram for the Lositic Map [x_{n+l} = r*x n*(l-x n)]')

)

$ also plot x n as function of n for relevant r value (as specified)

[junk indxR] = min(abs(r-rPlot)); % search for closest r value to rPlot

n= linspace(0,size(xS,2),size(xS,2));

figure(2); clf;

plot(n,xS(indxR,:), 'kd-"); hold on;

xlabel('n'); ylabel('x n');

stem(Nsettl,max(xS(indxR,:)), 'r-', 'marker', 'none'); % indicate bound for 'settling'

figure(l); stem(rPlot,max(xS(:)), ' 'r-', 'marker', 'none'); % indicate r for which 'time course' is plotted



EXlogisticBIF.m

‘Bifurcation’ becomes apparent....



- Once ris large enough (>3.6),
there are so many different
‘hopping points’ that the behavior
looks erratic or noisy (even though
there is a predictable underlying
structure)

EXlogisticBIF.m

> After the settling period, for larger values of
r, higher and higher orders of periods (i.e.,
oscillations between different values)
emerge
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- ‘period doubling’
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Motion of things that are not "point masses"....

Various concepts at play here:

> Projectile motion
» Center of Mass

> Rotation

> Moment of inertia

Kesten & Tauck



Finding the center of mass (CM)

Easy case (discrete)

> Left-hand term is the vector indicating the center of
mass relative to your chosen coordinate system

Kesten & Tauck 1 N

notation XCM = M

Wolfson notation

Hughes-Hallet et al (2004)
Wolfson



Finding the center of mass

Harder case (1-D continuous mass distribution)

Interdisciplinary connection:
Riemann sums and integrals!

Hughes-Hallet et al (2004)



Finding the center of mass

Harder case (1-D continuous mass distribution)

Wolfson notation

Hughes-Hallet et al (2004)



Wolfson



Additional slides beyond are for general reference....



Nonlinear systems

> So what can this approach tell us about nonlinear systems (e.g., van der Pol)?

Linearize! T —=—1 — 5(3:2 — l)j;

e.g., Connect pendulum and Taylor series
back to simple harmonic oscillator!

dx
1. Find the fixed points of the system — =
dt
dy 5
2. For a given fixed point (x,,),), determine the — = —X + 6(1 — X )y
Jacobian matrix dt
. Jacobian _
= f(z,y) oL 2]
— x Y
. J(xoa yo) _ 0g 0g
y=g9,y) Rz |
3. Determine the associated eigenvalues = Provides a snapshot in the

neighborhood local to the fixed point



Ex. van der Pol

dx
@ Y
=  Fixed point (x,,),) = (0,0) t
d
Yo vy e(1 —2%)y
= Associated Jacobian is then: dt
0 1 of of
J(O O) — J(xm?JO) = gagj gg
9 1 “d =
— € ox Oy To Yo
_ U 0 1
The characteristic equation is then: ANl =0
—1 €
= Associated eigenvalues: € T 62 — 4

- Assuming £>0, the real parts of both eigenvalues are positive meaning that
all solutions will diverge away from the fixed point (i.e., it is unstable)



Diffusion processes

o .
o —x°/y solution to
f(CIZ, y) — ye diffusion equation!



Diffusion processes

Weiss Fig.3.14 (modified)





