PHYS 2010 (W20) Classical Mechanics

2020.01.10 Tutorial

Christopher Bergevin York University, Dept. of Physics & Astronomy Office: Petrie 240 Lab: Farq 103 cberge@yorku.ca

Ref. (re images): Knudsen & Hjorth (2000), Kesten & Tauck (2012) 2. What are the properties of two vectors a and b such that

(a)
$$\mathbf{a} + \mathbf{b} = \mathbf{c}$$
 and $a + b = c$,

$$\mathbf{a} + \mathbf{b} = \mathbf{a} - \mathbf{b},$$

(c)
$$a + b = c$$
 and $a^2 + b^2 = c^2$.

19. Show for any vector \mathbf{a} that $\mathbf{a} \cdot \mathbf{a} = a^2$ and that $\mathbf{a} \times \mathbf{a} = 0$.

29. (a) Write an expression for the position vector \mathbf{r} for a particle describing uniform circular motion, using rectangular coordinates and the unit vectors \mathbf{i} and \mathbf{j} . (b) From (a) derive vector expressions for the velocity \mathbf{v} and the acceleration \mathbf{a} . (c) Prove that the acceleration is directed toward the center of the circular motion.

18. Projectiles are hurled at a horizontal distance R from the edge of a cliff of height h in such a way as to land a horizontal distance x from the bottom of the cliff. If you want x to be as small as possible, how would you adjust θ_0 and v_0 , assuming that v_0 can be varied from zero to some maximum finite value and that θ_0 can be varied continuously? Only one collision with the ground is allowed (see Fig. 4–14).

Fig. 4-14