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A mass M slides without friction on the roller coaster track shown in
Fig. 1.4. The curved sections of the track have radius of curvature R. The
mass begins its descent from the height h. At some value of h, the mass
will begin to lose contact with the track. Indicate on the diagram where
the mass loses contact with the track and calculate the minimum value of
h for which this happens.

( Wisconsin)




Solution:
Before the inflection point A of the track, the normal reaction of the
track on the mass, N, is

2
mu
N = — +mgsind,

where v is the velocity of the mass. After the inflection point,
mv?

R

for which sinf = %, or 6 = 30°.

N + mgsiné ,

The mass loses contact with the track if N < 0. This can only happen
for the second part of the track and only if

2
muv
R > mgsiné .

The conservation of mechanical energy
mglh — (R — Rsin@)] = %m'u2

then requires

h— R+ Rsinf > RS;“O ,

or

hZR_RsmO-

Thfe earliest the mass can start to lose contact with the track is at A for
which § = 30°. Hence the minimum  required is e
Yung-Kuo et al



Show that F' = meg + :L'yj_" cannot be a gradient vector field.



We have F; = 2zy and F5 = zy. Since 0F} /0y = 2z and OF5/0x = vy, in this case
8F2/8:v — 8F1/8y % 0

so F' cannot be a gradient field.

Hughes-Hallet et al (2013)



The gravitational field, F,of an object of mass M is given by

GM
o

—
.

F=—

Show that F' is a gradient field by finding a potential function for F.



Solution

The vector F points directly in toward the origin. If F = grad f, then F must be perpendicular

to the level surfaces of f, so the level surfaces of f must be spheres. Also, if grad f = F', then

| grad f|| = ||F | = GM/r? is the rate of change of f in the direction toward the origin. Now,
differentiating with respect to r gives the rate of change in a radially outward direction. Thus, if

w = f(z,y, z) we have

So let’s try

We calculate

So

grad f = foi + fy] + fok =

dw GM 1 d (1
_—_— = —— = M i —_— M_ T .
dr 72 & ( r2) = dr (r)
1 = G7M or f(CU Z) . GM

f _ 0 GM B —GMzx

fu = L GM — —GMy
Y \/m2+y2+z2 o (2 +y2—|—22)3/2’
f 0 GM —GMz

TRt @ P2

-GM
(22 + y2 + 22)3/2

-GM

7"3

(zi +yj +2k) =

—p

7 =,

Our computations show that Fisa gradient field and that f = G M /r is a potential function for F.

Hughes-Hallet et al (2013)



For what values of the constants a, b, and ¢ is the force F = i(ax + by”) + jcxy conserva-
tive?



Taking the curl, we have

i j k
VXF=| dlox dldy dloz|=k(c—2b)y
ax+by® cxy O

This shows that the force is conservative, provided ¢ = 2b. The value of a is immaterial.

Fowles & Cassidy



Let F' be the vector field given by F (2,3 = ———:

172 s y2
OF:. OF cp
(a) Calculate 5 2 3 L Does the curl test imply that F' is path-independent?
L Yy
(b) Calculate / F -dF , where C' is the unit circle centered at the origin and oriented counterclock-
C

wise. Is F a path-independent vector field?
(c) Explain why the answers to parts (a) and (b) do not contradict Green’s Theorem.



Solution (a) Taking partial derivatives, we have
oF, 6( B > 1 -2z y? — z?

Bz DE \ o2 +12)  2+y? (@2+92)? (a2 +92)?
Similarly,
0F; 0 —y -1 y -2y y? — 2
a—y:%(z2+y2>:x2+y (22 + 12)2 :(z2+y2)2'
Thus,
oF; OF _
or oy
Since F is undefined at the origin, the domain of F contains a hole. Therefore, the curl test
does not apply.

(b) On the unit circle, F' is tangent to the circle and ||F' || = 1. Thus,?

/ F . di = ||F|| - Length of curve = 1 - 27 = 27.
c

Since the line integral around the closed curve C' is nonzero, F isnot path-independent. We ob-
serve that ¥ = grad(arctan(y/z)) and arctan(y/z) is 6 from polar coordinates, for —7/2 <
0 < m/2. The fact that 0 increases by 27 each time we wind once around the origin counter-
clockwise explains why F is not path-independent.

(c) The domain of F isthe “punctured plane,” as shown in Figure 18.48. Since F is not defined at
the origin, which is inside C, Green’s Theorem does not apply. In this case

27r—/F dr #/(apz alzl)dd =0.

Y

Q

Figure 18.48: The domain of ' (z,y) = fyzf +a;3‘ Figure 18.49: The region R is not contained in the
o ’ z<+ . i —yi +x]
is the plane minus the origin ! domain of F (z,y) = —%5"

Hughes-Hallet et al (2013)




“Willie Mays, at the crack of the bat, will take a brief look at the flight of the ball,
run without looking back, be at exactly the right spot at the right time, and take the
ball over his shoulder with a basket catch. How he does it no one knows, certainly

not Willie Mays.”
Vannevar Bush (1890-1974)

— So how does an outfielder know where to go to catch a baseball?

May help to neglect air resistance....

Hint — May be useful to dig up:
Chapman, S. “Catching a Baseball,”” Am. J. Phys., Oct. 1968, pp. 868—870.



“Let the ball leave the bat (the origin) with an initial speed of V
at an angle 6 with the ground. As is well known ... the vertical and
horizontal displacements [that is, the x- and y-coordinates of the ball]
at any time ¢ [t = 0 is the instant the batter hits the ball] are

. i
y =Vsm(0) — -gt°,

2
x = Vcos(d)t, Never changes due
to (assumed) lack of
drag

Assume batter is at origin and fielder is
(luckily) right where ball will land (R)

Thus, the fielder does not actually see the arc of the ball’s trajectory,
but, instead, the ball appears to him to be simply first rising and
then falling in a vertical plane that passes through the fielder and the
batter. What visual cue to the fielder can there be in this situation—
the toughest one that a fielder can face—that tells him that the ball is

coming right to him? This is the question that Chapman thought he
answered.

Nahin (2016)



To start, we define ¢t =T to be the time when the ball returns to
Earth (that is, when the fielder catches the ball). Then, as y(T) =0, we
have

Vsin(0)T — %gTQ =0,

and solving for T > 0, we get

_ 2Vsin(9)
—g a

¥ §

Substituting this result into the equation for x, and since x(7) = R, we
have

212 sin(#) cos(H)
: .

=

From the geometry of Figure 17.1 we can immediately write, for
every instant of time 0 <¢ < T,

3 Vsin@) — Lgt? ¢ [Vsin®) — ggt]
tan(qb) — — 212 sin(6) cos(6) - i
R—x A = Vcos(@)  Vcos(8) [% —t]

_ t[2Vsin() —gtl3
"~ Vcos(9) 2[2Vsin(9) — gt] ’

and so we arrive at the simple result

tan(¢) = (constant)z.

__ 8
2V cos(0) ’
That is, for a fielder standing right where the ball will land, the tangent

of his line-of-sight elevation angle to the ball’s instantaneous location

increases linearly with time.
Nahin (2016)



Assume the fielder is at some
distance +/- s relative to R

Suppose that 7 is the fielder’s reaction time and that once he decides
he has to move, the fielder runs at the constant speed v that just gets
him to x = R at time ¢ = T, that is,

s =v(T —r1).

The fielder’s coordinate along the horizontal axis at time ¢ > 7 is
(R—s)+v(t — 1), and so now we can write

_ y
)= R Fve—v)—= Since

then

Now relax the assumption that the
fielder is at R...

s = ol — VT,

Nahin (2016)



and so

Vsin(0)t — %gﬂ

tan(p) = s
R—s+tv (t P ;) — Vcos(O)t

t [Vsin(t?) — %gt]
212 sin(0) cos(h)
g

—s+v({Et—T)+s —Vcos(O)

t[2V sin(0) —gt]%
5 .
2V sm(gB) cos(0) g [t _ 2Vsin(8)

] — Vcos(0)t

1
§gt [2Vsin(0) — gt]

% sin(f) cos(0) + v[gt — 2Vsin(8)] — Vg cos(0)¢

1
ggt [2Vsin(0) — gt ]

B 212 sin(0) cos(9) — v[2V'sin(0) — gt] — Vg cos(O)t

%gt [2Vsin(f) — gt]
~ Vcos(0)[2Vsin(0) — gt] — v[2Vsin(0) — gt]

B 5gt[2Vsin(9) — gt ]
~ [2Vsin(0) — gt][V cos(d) — v]

_ gt
~ 2[Vcos(6)—v]’

Nahin (2016)



or, once again,

tan(¢) = (constant)z.

So, just as before, even with the added complications of the two new
variables s and 7, the tangent of the fielder’s line-of-sight elevation

angle to the instantaneous location of the ball increases linearly with
time. Amazing!

Nahin (2016)



and so

Vsin(@)t — %th

tan(¢) = 5
R—s+v (t T+ ;) — Veos(O)t

t [Vsin(e) - %gt]
2172 sin(9) cos(9) B
g

s+v@E—T)+s —VcosO)

t[2Vsin(0) —gt]%
5 -
2V sm(ge) cos(0) o |:t B 2Vsm(9):|

— Vcos(0)

%gt[QVsin(G) —gt]

~ o2 sin(f) cos() 4 v[gt — 2V'sin(f)] — Vg cos(0)t

1
§gt [2Vsin(0) — gt]

~op? sin(f) cos(9) — v[2Vsin(0) — gt] — Vg cos(O)t

%gt[QVsin(E)) —gt]
~ Vcos(0)[2Vsin(@) —gt] — v[2Vsin(6) — gt]

B sgt[2Vsin(0) — gt
"~ [2Vsin(9) — gt][V cos(9) — v]

_ gt
" 2[Vcos(d) —v]’

or, once again,

Physical Laws should have mathematical beauty.
— written on a Moscow blackboard in 1955 by the 1933 Nobel

Prize in Physics winner Paul Dirac

tan(¢) = (constant)z.

Nahin (2016)
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81. Starting from 2 height H,
a ball slips without . friction,
down a smooth plane inclined at
an angle of 30° to the horizontal
(Fig. 43). The length of the plane

‘is H|3. The ball then falls on to

a horizontal surface with an im-
pact that may be taken as per-
fectly elastic. How high does the
ball rise after striking the hori-

zontal plane?



' 81. The ball slips from the
plane (see Fig. 192) with a
* velocity o. 4/gH|3 at an in-
\ clination of 30° to the

\ /  horizontal. Then the ball
describes a parabola and
\ 7 falls on to the horizontal
\ plane with a velocity in-’
V7 clined at some unknown
v ¥ , V angle to the horizontal. But
w7/ the height to which the ball
Fic. 192 will rise after an absolutely
elastic impact on the plane depends on only the vertical com-
ponent of this velocity. The value of this component can be
found by calculating the speed with which the ball will fall from

ojwn
=
-
~

a height of & H with an initial velocity of 3 1/gH]3. From the
g ty gH|

equation
§H= J gH, &
Ve R

we find that the time of fall of the ball
V21-1  ['H

2 3z ‘
Therefore its velocity at the end of the fall will be

21 [eH
v=z;o—|-gt="—/-2— ,\/‘%

Therefore the height to which the ball will rise after its elastic

t=

"impact on the plane will equal

Lo

2¢ 8
Shaskol’Skaya & EI'Tsin (1963)



82.. A bullet of mass m hits a wooden. block of mass M, which is
suspended from a thread of length [ (a ballistic pendulum), and is
embedded in it. Find through what angle the block will swing if
the bullet’s velocity is v (Fig. 44).

A

Fic. 44



82. A bullet of mass m, V/W
travelling with a velocity v, /1A
has momentum my. After the (e
bullet embeds itself in the /
block, the block plus the /
bullet will have exactly the /
same momentum (the im-. /
pact is completely inelastic).
Therefore the velocity 2, N ">
which the block acquires im- [M_] -<—<—om
mediately upon the bullet’s
hitting it, will be determined
from the law of conservation of momentum: my = (M + m)v,
Also the kinetic energy of block and bullet will be

F1c. 193

M+ mp® _  m my?
2 M+m 2

"Then the block will rise, and this kinetic energy will be changed
into potential energy. Since the whole mass (M -+ m) is virtually
at a distance of / from the point of suspension 4 (Fig. 193), its
centre of gravity will rise, in consequence of a swing through an
angle « on the part of the pendulum, through height Az = { (1—

“cos ). At the farthest point of its swing, through an angle o, the
potential energy must equal the initial kinetic energy, i.e.

m mo?
Wi 2 (M 4 m)gl (1 —cos ).
Hence the angle through which the pendulum swings is given
by the relationship
. 9Oy m2y?
4(M + m)%gl

Shaskol’Skaya & EI'Tsin (1963)





