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1. THE RETURNING EXPLORER

AN OLD RIDDLE runs as follows. An explorer walks one mile
due south, turns and walks one mile due east, turns again
and walks one mile due north. He finds himself back where
he started. He shoots a bear. What color is the bear? The
time-honored answer is: “White,” because the explorer
must have started at the North Pole. But not long ago some-
one made the discovery that the North Pole is not the only
starting point that satisfies the given conditions! Can you
think of any other spot on the globe from which one could
walk a mile south, a mile east, a mile north and find himself
back at his original location?



Problem

Calculate V - r:

Here r is just the "coordinate vector" (i.e., r =ix + jy + kz)
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which reducesto V - r = 3.

Arfken & Weber (2013)



Problem

For a projectile experiencing linear
drag, determine an expression for

the asymptotic horizontal limit as
shown here.
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From Taylor (2005)

mv =mg — bv,

T=1/k=m/b
x(t) = v,r(l—e T
y@) =

[for linear drag].

(Vyo + V)T (1 — €7/7) — vy 1.

— So be careful re
the units of the
constant used in the
drag force!



Problem

A particle moving in 1-D experiencing quadratic drag only can be described by the
following ODE. Solve this via separation of variables to determine v(¢) and x(?).
Sketch them as well, noting any relevant time constants.
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[ ;
CUv 0 horizontally and subject to a quadratic air resistance. (a) The

velocity is given by (2.49) and goes to zero like 1/7 as t — oc.
(b) The position is given by (2.51) and goes to infinity as t — o0.

Taylor (2005)



Problem

Find the scalar potential for the gravitational force on a unit mass m1,

Gmimor kr
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Need to integrate: F=—Vg
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By use of FG = —Fapplied, @ comparison with Eq. (1.95a) shows that the potential is the
work done in bringing the unit mass in from infinity. (We can define only potential dif-
ference. Here we arbitrarily assign infinity to be a zero of potential.) The integral on the
right-hand side of Eq. (1.132) is negative, meaning that ¢ (r) is negative. Since Fg 1s
radial, we obtain a contribution to ¢ only when dr is radial, or

X kdr k Gmimy
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The final negative sign is a consequence of the attractive force of gravity. B

Arfken & Weber



Problem

A baseball is dropped from a tall tower. Assume only gravity and air resistance
proportional to the balls velocity squared (i.e., quadratic drag) act on the ball.
Provide a numerical estimate of the associated terminal velocity and make a
rough time sketch of the associated timecourse of the speed.



f=—f()", @2.1)

where v = v/|v| denotes the unit vector in the direction of v, and f (v) is the magnitude
of f.

The function f(v) that gives the magnitude of the air resistance varies with v in
a complicated way, especially as the object’s speed approaches the speed of sound.
However, at lower speeds it is often a good approximation to write!

f(w)=bv+ cv’ = Jiin T fquad 22)
where fj;, and fy,aq stand for the linear and quadratic terms respectively,
fin="bv and f.q=cv’. (2.3)

The physical origins of these two terms are quite different: The linear term, fj;,, arises
from the viscous drag of the medium and is generally proportional to the viscosity of
the medium and the linear size of the projectile (Problem 2.2). The quadratic term,
Jquad» arises from the projectile’s having to accelerate the mass of air with which it 1s
continually colliding; f,,4 is proportional to the density of the medium and the cross-
sectional area of the projectile (Problem 2.4). In particular, for a spherical projectile
(a cannonball, a baseball, or a drop of rain), the coefficients  and ¢ in (2.2) have the
form

b=p8D and c=yD2 2.4)

where D denotes the diameter of the sphere and the coefficients 8 and y depend
on the nature of the medium. For a spherical projectile in air at STP, they have the
approximate values

B =16 x 107* N.s/m? (2.5)

and

y = 0.25 N-s?/m*. (2.6)

Taylor (2005)



mv = mg — cv’ mg
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Taylor (2005)



Problem

Calculate the scalar potential for the centrifugal force per unit mass, F¢c = w?rt, radially

outward. Physically, you might feel this on a large horizontal spinning disk at an amuse-
ment park.



integrating from the origin outward and
taking ¢c(0) =0, we have

w?r?

¢c(r)=—f0 Fe -dr=—

If we reverse signs, taking Fsgo = —kr, we obtain ¢sgo = %krz, the simple harmonic
oscillator potential.

The grzivitational, centrifugal, and simple harmonic oscillator potentials are shown in
Fig. 1.34. Clearly, the simple harmonic oscillator yields stability and describes a restoring
force. The centrifugal potential describes an unstable situation. u
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FIGURE 1.34 Potential energy versus distance (gravitational,
centrifugal, and simple harmonic oscillator).
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