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A load of mass m lies on a perfectly smooth plane, being
pulled in opposite directions by springs 1 and 2, whose coeff-
cients of elasticity are &, and &, respectively (Fig. 60). If the load
be forced out of its state of equilibrium (by being drawn aside), it
will begin to oscillate with period 7. Will the period of oscillation

be altered if the same springs be fastened not at points 4; and 4,,

but at B, and B,? Assume that the springs are subject to Hooke’s
law for all strains.
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Ex. SOL

A load of mass m lies on a perfectly smooth plane, being
pulled in opposite directions by springs 1 and 2, whose coeff-
cients of elasticity are &, and &, respectively (Fig. 60). If the load
be forced out of its state of equilibrium (by being drawn aside), it
will begin to oscillate with period 7. Will the period of oscillation

be altered if the same springs be fastened not at points 4; and 4,,
but at By and B,? Assume that the springs are subject to Hooke’s

law for all strains.
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Problem

(a) If z = Ae®, deduce that dz = jz df, and explain the meaning
of this relation in a vector diagram.
(b) Find the magnitudes and directions of the vectors (2 + jv/3)

and (2 — jV/3)2.

French (1971)



Problem

Find the equivalent electrical circuit for the hanging mass-spring shown in Figure
3-17a and determine the time dependence of the charge g in the system.

" 11—

1 F=mg
(a) (b)

FIGURE 3-17 Example 3.4 (a) hanging mass-spring system;
(b) equivalent electrical circuit.



RLC circuit = Damped, Driven Harmonic Oscillator

Mechanical

F (force)

v (velocity)
x (position)
m (mass)

b (damping)
k (spring)
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Electrical

V' (potential) state

I (current) variables

g (charge)

L (inductance)

R (resistance)
1/C (capacitance)
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RLC circuit = Damped, Driven Harmonic Oscillator

? Mechanical Electrical
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Solution. Let us first consider the analogous quantities in mechanical and electri-
cal systems. The force F (= mgin the mechanical case) is analogous to the emf £.
The damping parameter b has the electrical analog resistance R, which is not
present in this case. The displacement x has the electrical analog charge ¢g. We
show other quantities in Table 3-1. If we examine Figure 3-17a, we have

1/k— C,m— L, F— £, x— ¢, and x— 1. Without the weight of the mass, the
equilibrium position would be at x = 0; the addition of the gravitational force
extends the spring by an amount 4 = mg/k and displaces the equilibrium position
to x = h. The equation of motion becomes

mi+ k(x — h) =0 (3.73)
or
mx + kx = kh
with solution
x(t) = h + Acos wyt (3.74)

where we have chosen the initial conditions x(¢ = 0) = A+ Aand x(t= 0) = 0.
We draw the equivalent electrical circuit in Figure 3-17b. Kirchoff’s equation
around the circuit becomes

dl 1 a1
L=+ |1d=¢€== :
- CJ di=€ = (3.75)

Thornton & Marion (2004)



TABLE 3-1 Analogous Mechanical and Electrical Quantities

Mechanical Electrical
x Displacement q Charge
x Velocity g=1 Current
m Mass L Inductance
b Damping resistance R Resistance
1/k Mechanical compliance C Capacitance
F Amplitude of impressed force £ Amplitude of impressed emf

where ¢, represents the charge that must be applied to C to produce a voltage £.
If we use I = ¢, we have

q9 4
Li+—=— 3.7
1 C C (3.76)

If g= goand I = 0 at ¢ = 0, the solution is

q(t) = q; + (g0 — q1) cos wyt (3.77)

which is the exact electrical analog of Equation 3.74.

Thornton & Marion (2004)



Problem

Consider the series RLC circuit shown in Figure 3-18 driven by an alternating
emf of value E; sin wt. Find the current, the voltage V; across the inductor, and
the angular frequency w at which V; is a maximum.

L R
E, sin ot

L
=
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FIGURE 3-18 Example 3.5. RLC circuit with an alternating emf.



so the voltage drops around the circuit become

L§+ Rg+ %= E, sin wt

Thornton & Marion (2004)



We identify this equation as similar to Equation 3.53, which we have already
solved. In addition to the relationships in Table 3-1, we also have B = b/2m— R/2L,
wo= Vk/m— 1/\/L_C_, and A = F,/m— E,/L. The solution for the charge ¢is
given by transcribing Equation 3.60, and the equation for the current /is given by
transcribing Equation 3.66, which allows us to write

—E, .
1= sin(wt — 8)

1 2
R2+|— —
\/ (w C wL)
where 8 can be found by transcribing Equation 3.61.
The voltage across the inductor is found from the time derivative of the current.

dl —wlE
Vi=L— = o cos(wt — 6)

dt \/72 1 2
+|— — wL

= V(w) cos (wl — &)

To find the driving frequency @ ,,,,, which makes V; a maximum, we must take the
derivative of V; with respect to w and set the result equal to zero. We only need to
consider the amplitude V(w) and not the time dependence.

2L 2
Y A—
V(w) LE°(R ¢’ wzCﬂ)

B . 1 O\ 3/2
+ —

We have skipped a few intermediate steps to arrive at this result. We determine
the value w,,,, sought by setting the term in parentheses in the numerator equal
to zero. By doing so and solving for @ p,, gives

1
R*C?
2

W max =

LC -

which is the result we need. Note the difference between this frequency and those
given by the natural frequency, w, = 1/V LC, and the charge resonance frequency
(given by transcribing Equation 3.63), wp = V1/LC — 2RY/L2

Thornton & Marion (2004)



Problem

A simple harmonic oscillator consists of a 100-g mass attached to a spring whose
force constant is 10* dyne/cm. The mass is displaced 3 cm and released from rest.

Calculate (a) the natural frequency v, and the period 7, (b) the total energy, and
(c) the maximum speed.



a} o L[k

or,

or,

b)

so that

1 Jk_ 1 10* dyne/cm _ 10
2z2\'m 2%

102 gram Y

v,=1.6 Hz
1 27
Ty =—=—- sec
v, 10

7, =0.63 sec

gram-cm

sec’.cm _ 10 1

=— sec
ram 2
&

E=lra?= % x10* x 3* dyne-cm

2

E=45x10" erg

¢) The maximum velocity is attained when the total energy of the oscillator is equal to the

kinetic energy. Therefore,

or,

% mvl, =45x10" erg

/2 x 4.5 x10*
L e —
max 100

m

V... =30 cm/sec

Thornton & Marion (2004)



Problem

Allow the motion in the preceding problem to take place in a resisting medium.
After oscillating for 10 s, the maximum amplitude decreases to half the initial
value. Calculate (a) the damping parameter 3, (b) the frequency v, (compare with
the undamped frequency v,), and (c) the decrement of the motion.



or,

so that

Sincet, =10 sec,

b) According to Eq. (3.38), the angular frequency is

2 2
o, =y - p

where, from Problem 3-1, @, =10 sec”!. Therefore,

v, = \/(10)2 ~(69x10%?)’

= 10[1 - % (6.9)* 10*} sec”!

so that

- (1-2.40x107°) sec™
o

which can be written as
v =v(1-9)
where
5=240x10"
Thatis, v, is only slightly different from v;.

c) The decrement of the motion is defined to be e’ where 7; =1/v; . Then,

©)

(6)

@)

®)

©)

a) The statement that at a certain time ¢ =¢, the maximum amplitude has decreased to one-
half the initial value means that

PP |
|| = Age™™ =§A0 0
1
B _ = 2
e = @
In2 0.69
p=—-= 3)
tl tl
|8=69x10 sec”’ @)

Thornton & Marion (2004)



Problem

Consider a simple harmonic oscillator. Calculate the time averages of the kinetic
and potential energies over one cycle, and show that these quantities are equal.
Why is this a reasonable result? Next calculate the space averages of the kinetic and
potential energies. Discuss the results.

Hint: Recall that

1 b
e [ 00



SOL a) Time average:
The position and velocity for a simple harmonic oscillator are given by

x = Asin w,t 1

X =@, A cos ot (2)

where o, =/k/m

The time average of the kinetic energy is

t+7

171
T)==| —mx’ dt 3
m=213 ©)
27 . . P
where 7=— is the period of oscillation.
&y
By inserting (2) into (3), we obtain

(T)= er mA* o) _[ cos® w,t dt 4)
t

or,

_mA’w;
4

(T) )

In the same way, the time average of the potential energy is

1t+71
U= — kx* dt
=13

T

t+z
:ikA2 I sin® w,t dt
27 .
kAZ
Y ©

Thornton & Marion (2004)



and since w; =k/m , (6) reduces to

From (5) and (7) we see that

The result stated in (8) is reasonable to expect from the conservation of the total energy.

E=T+U

7)

(8)

©)

This equality is valid instantaneously, as well as in the average. On the other hand, when T and
U are expressed by (1) and (2), we notice that they are described by exactly the same function,

displaced by a time 7/2:

mA*}

(10)

(11)

T cos® m,t
2
U= mA ot sin® et
Therefore, the time averages of T and U must be equal. Then, by taking time average of (9), we
find
E
T\ =(U)==
() =(u)=%

Thornton & Marion (2004)



b) Space average:

The space averages of the kinetic and potential energies are

A
lj 1mJ'c2 dx
Al

and
A 2 A
L_Izlj- 1 dx:m_“x2 dx
Ay 2 28 4
(13) is readily integrated to give
ma; A

lj:

6

To integrate (12), we notice that from (1) and (2) we can write

x* = w?A® cos® a,t = i A* (1 —sin? a)ot)

=) (A2 - xz)

(12)

(13)

(14)

(15)

Thornton & Marion (2004)



2A
o {A3 _%} (16)
or,
T_o ma)6§A2 (17)

From the comparison of (14) and (17), we see that

T=2U (18)

To see that this result is reasonable, we plot T = T(x) and U = U(x):
p—
T=Lmoia?1-%
2 A
(19)

1
U = = max*
2
Ener
mA2? ¥ o

U= U(x)

1
E = const. = —mA’w}
2

E
<l : : - x

<5 =

-A 0 A
And the area between T(x) and the x-axis is just twice that between U(x) and the x-axis.

Thornton & Marion (2004)



