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Random Walk with Drift (Marius Lehene)



Diffusion



Diffusion

Berg (1993)



Diffusion

Berg (1993)

Some (remarkably deep) ideas right off the bat:

Ø Random walkers

Ø Temperature, Boltzmann’s constant

Ø Einstein and 1905

Ø Mean-squared velocity, “ensemble”

Ø “Brownian movement”

Ø “Microscopic theory” (ch.2 is “Macroscopic theory”)

à A kernel of a deep idea is here, the distinction 

between “lots of little things” versus “big things”

[statistical mechanics being the thread tying things together]



http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

Brownian motion
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- Adolf Fick (German physiologist, ~1855)
[BTW: uncle to person who first successfully put a contact lens on a person in 1888!]

- Thomas Graham (Scottish chemist, ~1828-1833)
[pioneered the concept of dialysis]

Diffusion (1-D)



�A few years ago, Graham published an extensive investigation 
on the diffusion of salts in water, in which he more especially 
compared the diffusibility of different salts. It appears to me a 
matter of regret, however, that in such an exceedingly valuable and 
extensive investigation, the development of a fundamental law, for 
the operation of diffusion in a single element of space, was 
neglected, and I have therefore endeavoured to supply this 
omission.�

- A. Fick (1855)



Qualitative

Quantitative Analytical



From Graham�s observations (~1830):

�A few years ago, Graham published an extensive investigation on the diffusion of 
salts in water, in which he more especially compared the diffusibility of different 
salts. It appears to me a matter of regret, however, that in such an exceedingly valuable 
and extensive investigation, the development of a fundamental law, for the operation 
of diffusion in a single element of space, was neglected, and I have therefore 
endeavoured to supply this omission.�

- A. Fick (1855)

Freeman

Diffusion (1-D)



Concentration - of solute in solution
[mol/m3]

Position [m], Time [s]

Flux - net # of moles crossing per 
unit time t through a unit area 
perpendicular to the x-axis [mol/m2·s]

From Graham�s observations (~1830):

Note: flux is a vector!

Diffusion (1-D)



Short Excursion: Microscopic Basis for Diffusion

Brownian motion Þ �Random Walker� (1-D)

Ensemble of Random Walkers



t = 0

t = 1

t = 5

t = 50



Profile 1 Profile 2

Fick’s 1st Law (1-D)



Diffusion Constant (D)

constant of proportionality?

- diffusion constant is always positive (i.e., D > 0)
- determines time it takes solute to diffuse a given distance in a medium
- depends upon both solute and medium (solution)
- Stokes-Einstein relation predicts that D is inversely proportional to solute molecular radius



t = 50

t = 1
smaller D

larger D

Diffusion Constant (D)



Higher Dimensions:

Analogous Flux Laws:

Diffusion (Fick):

Convection (Darcy): fluid flow, hydraulic permeability, 
and pressure

Heat Flow (Fourier): heat flow, thermal conductivity, 
and temperature

Electric Conduction (Ohm): current density, electrical conductivity,
and electric potential

Generalizations



Þ imagine a cube (with face area A and length Dx) and a time interval Dt

solute entering from left - solute exiting from right
(during time interval [t, t +Dt] )

= change in amount of solute inside cube
(during time interval [t, t +Dt] )

Weiss

Continuity equation



solute entering from left  - solute exiting from right
(during time interval [t, t +Dt] )

change in amount of solute inside cube
(during time interval [t, t +Dt] )

=

=

amount of solute entering
on left side of cube

amount of solute leaving
on right side of cube

amount of solute in cube at
the end of the interval

amount of solute in cube at
the start of the interval



Þ conservation of mass within the context of our imaginary cube yielded the continuity equation



2. Continuity Equation:

+

1. Fick�s First Law:

(Fick�s Second Law)

Diffusion equation



2. Steady-state: Flux can be non-zero, but flux and concentration are independent of time  

1. Equilibrium: Zero flux and concentration is independent of time

D ¹ 0 Þ concentration is independent of space and time

D = 0 Þ non-diffusible solute is automatically at equilibrium

Þ

[xo is a reference location where the 
concentration is known]

Þ

[integrate Fick�s 1st Law]

Freeman

Diffusion processes



3. Impulse Response: Point-source of particles (no mol/cm2) at t = 0 and x = 0
[Dirac delta function d(x)]

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

Solution
(for t > 0)

need to solve:

given the inital/boundary conditions:

Batschelet Fig.12.5

Diffusion processes



solution to
diffusion equation!



Weiss Fig.3.14 (modified)



Importance of Scale

Freeman

Question: How long does it take (t1/2) for ~1/2 the solute 
to move at least the distance x1/2?

Gaussian function with zero mean and 
standard deviation: 

For small solutes 
(e.g. K+ at body temperature)



Exercise

At a junction between two neurons, called a synapse, there is a 20 
nm cleft that separates the cell membranes. A chemical transmitter 
substance is released by one cell (the pre-synaptic cell), diffuses 
across the cleft, and arrives at the membrane of the other (post-
synaptic) cell. Assume that the diffusion coefficient of the chemical 
transmitter substance is D = 5 � 10−6 cm2/s. 

à Make a rough estimate of the delay caused by diffusion of the 
transmitter substance across the cleft. What are the limitations of this 
estimate? Explain.



Exercise

At a junction between two neurons, called a synapse, there is a 20 nm cleft that 
separates the cell membranes. A chemical transmitter substance is released by one 
cell (the pre-synaptic cell), diffuses across the cleft, and arrives at the membrane of 
the other (post-synaptic) cell. Assume that the diffusion coefficient of the chemical 
transmitter substance is D = 5 � 10−6 cm2/s. 

à Make a rough estimate of the delay caused by diffusion of the transmitter substance 
across the cleft. What are the limitations of this estimate? Explain.

Answer

Consider the time it takes for ½ to cross the cleft, then we have 
approximately 1 us (1 � 10−6 s). However, this calculation:

- Ignores the cleft geometry (e.g., not infinite baths)
- There is nothing special about ½ the solute here (perhaps only a few 
molecules are needed, or perhaps a lot are) 



Exercise

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base 
of your spine to your toe. Assume that the membrane of this neuron can be represented as a 
uniform cylindrical shell that encloses the intracellular environment, which is represented as a 
simple saline solution. The diameter of the shell is 10 μm and the length is 1 m. Assume that 10−15

moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the 
neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial 
dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z 
and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 10−7 cm2/s and that 
the membrane is impermeant to the dye.

à Determine the amount of time t1 required for 5% the injected dye to diffuse to points outside the 
region −1 mm< z < 1 mm.

à Determine the amount of time t2 required for half the injected dye to diffuse to points outside the 
region −1 mm< z < 1 mm. Determine the ratio of t2 to t1. Briefly explain the physical significance of 
this result.

à Determine the amount of time t3 required for 5% the injected dye to diffuse to points outside the 
region −10 mm< z < 10 mm. Determine the ratio of t3 to t1. Briefly explain the physical significance 
of this result.



Answers

à Determine the amount of time t1 required for 5% the injected dye to diffuse to points outside the 
region −1 mm< z < 1 mm.

3.5 hours

à Determine the amount of time t2 required for half the injected dye to diffuse to points outside the 
region −1 mm< z < 1 mm. Determine the ratio of t2 to t1. Briefly explain the physical significance of 
this result.

1.3 days

à Determine the amount of time t3 required for 5% the injected dye to diffuse to points outside the 
region −10 mm< z < 10 mm. Determine the ratio of t3 to t1. Briefly explain the physical significance 
of this result.

14.5 days



Exercise

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base 
of your spine to your toe. Assume that the membrane of this neuron can be represented as a 
uniform cylindrical shell that encloses the intracellular environment, which is represented as a 
simple saline solution. The diameter of the shell is 10 μm and the length is 1 m. Assume that 10−15

moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the 
neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial 
dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z 
and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 10−7 cm2/s and that 
the membrane is impermeant to the dye.

The following plot shows the 
concentration of dye as a function of time 
for a particular point at z0 > 0. 

à Determine z0.
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