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Model of Steady-State Electrodiffusion through Membranes
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- Now we will consider the effect of solutes having charge



Equations of Electrodiffusion

Nernst-Plank Equation
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Continuity
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Poisson’ s Equation
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Some new variables

Zn - charge # (or “valence charge”)
(e.g., +1,-1,+2,0, etc...) [re 1 e=1.602 x 10-1° C]

F - Faraday’ s constant [9.65 x 10* C/mol]
J. - current density [A/cm?] —
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permittivity [F/m] = Se e e e e

http://en.wikipedia.org/wiki/Permittivity

from Einstein

mechanical mobility [s/kg] relation
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Mobility & Stokes-Einstein Relation

_ N from Einstein
Uy, - mechanical mobility [s/kg] relation

» Force (f,) required to move a sphere of radius a through a fp = 67T6U)V
viscous medium of viscosity n with a velocity of v is

> Particle mobility, v, , is defined as the ratio of the particle by, 1
velocity to the force on the particle fp brran

> Relating to the diffusion constant (Annus Mirabilis):

Dn = unRT

Stoke’ s Law
(eqn.3.22)

Similar to
(reciprocal of)
impedance

D = uykT = uUNAKkT = URT

1. u, is the molar mechanical mobility of ion n. In some fields (e.g., solid-state physics),
it is customary to use the molar electrical mobility, i, where i, = |z, |Fuly. iy has units
of (cm/s)/(V/cm). In terms of the molar electrical mobility, the Einstein relation is D, =

(RT1n)/(|ZnlF).



Nernst-Plank Equation = Electrodiffusion

current
density

dcy(x,t) oY (x,t)

Jo(x,t) = —2,FD, — upz2F?c,(2,1)

ox ox

diffusion electric
drift

- Essentially a charged version of Fick’ s first law, but now with
an additional term due to electric forces (the drift term on the right)



Electric Drift

—> Consider a charge ¢ placed between

- 1: two uniformly/oppositely charged plates
-+ = SR T
1’ T i - uniform E field between
Hop— > Vg - force exerted on charge (Coulomb’ s law)

g>0
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- E depends upon spatial gradient of the
potential
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Think in terms of energy (e.g., where does it come from? conserved?)

dcy(x,t)
Ox

0Y(x, 1)

Jo(x,t) = —2,FD,
(,1) = —2 9

— Up 22 F2e, (2, 1)



Continuity Equation

0J,(z,t) dcp(x, 1)
ox ot

spatial change in temporal change in
current density charge density

= —2, I

—> Just like our derivation for diffusion, this essentially tells us
about the conservation of charge



Review: Continuity Equation (re diffusion)

— imagine a cube (with face area 4 and length Ax) and a time interval At

volume AAx
area A
O(x,1) 4= | — O(x+Ax,t) e ,H;%_r’, )
X  x+Ax X X+ Ax
solute entering from left - solute exiting from right = change in amount of solute inside cube
(during time interval [¢, 1 +Af] ) (during time interval [z, t +Af] )

ANt ¢(x,t) AAzxc(x,t)

Weiss



Review: Continuity Equation (re diffusion)

volume AAx
area A
(1)()(,1‘) —_ E —— q)(X'i"A.’C,t) CX'{%‘%X,[)
X x+Ax % xX+Ax
solute entering from left - solute exiting from right = change in amount of solute inside cube
(during time interval [¢, 1 +Af] ) (during time interval [z, t +Af] )
ANt p(x,t + At)2) — AAL p(x + Az, t + At/2) = AAzc(x+ Azx/2,t+ At) — AAx c(x + Ax/2,t)
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Review: Continuity Equation

volume AAx
area A
O(x,1) 4= | s O(x+Ax,1) e M;%r, ‘)
X x+Ax % xX+Ax
90 Oc
— _— = —
ox ot
Relationship between current density and flux:
0J,(x,1) dey (x4 t)

ar —a ot Jn(:c,t) = Zanbn(fEat)



Poisson’ s Equation

0*(x,t) 1
92— o zn:ancn(x,t)

- Stemming from Gauss’ Law, relates the

charge density and electric potential
charge density [C/m3]

p =Y zFey(a,t)



8 O 6 / W Poisson's equation - Wiki... \+
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Main article: Electrostatics

One of the cornerstones of electrostatics is setting up and solving problems described by the Poisson equation. Solving the Poisson equation amounts to
finding the electric potential ¢ for a given charge distribution 2.

The mathematical details behind Poisson's equation in electrostatics are as follows (Sl units are used rather than Gaussian units, which are also
frequently used in electromagnetism).

Starting with Gauss's law for electricity (also one of Maxwell's equations) in differential form, we have:

where ¥/ - is the divergence operator, D = electric displacement field, and p¢= free charge density (describing charges brought from outside). Assuming
the medium is linear, isotropic, and homogeneous (see polarization density), we have the constitutive equation:

D=cE

where € = permittivity of the medium and E = electric field. Substituting this into Gauss's law and assuming ¢ is spatially constant in the region of interest

obtains:
P
V-E=*
In the absence of a changing magnetic field, B, Faraday's law of induction gives:
0B
VxE=—-—=0
ot
where §/ x is the curl operator and tis time. Since the curl of the electric field is zero, it is defined by a scalar electric potential field, { (see Helmholtz
decomposition).
E=-Vyp
The derivation of Poisson's equation under these circumstances is straightforward. Substituting the potential gradient for the electric field

V-E:V-(—V@):—V%:i—f,

directly obtains Poisson's equation for electrostatics, which is:

Vi = b,

=

Solving Poisson's equation for the potential requires knowing the charge density distribution. If the charge density is zero, then Laplace's equation
results. If the charge density follows a Boltzmann distribution, then the Poisson-Boltzmann equation results. The Poisson—Boltzmann equation plays a
role in the development of the Debye—Hiickel theory of dilute electrolyte solutions.

The above discussion assumes that the magnetic field is not varying in time. The same Poisson equation arises even if it does vary in time, as long as
the Coulomb gauge is used. In this more general context, computing ¢ is no longer sufficient to calculate E, since E also depends on the magnetic vector
potential A, which must be independently computed. See Maxwell's equation in potential formulation for more on ¢ and A in Maxwell's equations and
how Poisson's equation is obtained in this case.



Steady-State Electrodiffusion through Membranes

Inside Membrane Outside
c cn () Cn Steady-state
ey, t
— Oen(, 1) =0
» J, ot
OJp(z,1)
+ Vin — - 5 =0
— .J, = constant
0 d x

Electrolyte solutions — Electroneutrality

if t>>7, and z >> Ap then > zpFen(z,t) =0

Y (v, 1) _ 1 S znFen(z, 1) - Simplifies Poisson’ s equation such that
dz? e wis a linear function across the membrane



Electrolyte solutions — Electroneutrality

if t>>7, and z >> Ap then > zpFen(z,t) =0

= Charge Relaxation Time Tp

Measures temporal change in charge density I
(i.e., relaxation time of charge distribution)

z/Ap

Figure 7.7 The spatial distribution of

charge near a plate containing positive

fixed charges. The counterions are
z/Ap  anions and are in higher concentration
near the plate than far from the plate.
Measures spatial extent of electric potential The cations are at a lower concentration
(i.e., distance over which electroneutrality is violated) () near the plate .thag fa.r fr9m the
plate. The spatial distributions of both
mobile ions are exponential, with space
constant equal to the Debye length.

- Debye Length A D

- Both are very small (1 ns and 1 nm respectively; see Weiss v.1 7.2.3),
justifying that ionic solutions obey electroneutrality



Steady-State Electrodiffusion through Membranes

Inside Membrane Outside
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Rearrange Nernst-Plank Equation

dey(z) 2 2 di)(z) 2 72 D, den(x) | dip(x)
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Steady-State Electrodiffusion through Membranes

Inside Membrane Outside
sz cn() cn
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Steady-state
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— J, = constant

=0

=0

- Like Ohm’ s law!

Nernst Equilibrium Potential

cn(d)  RT . ¢

In =
cn(0) 2z, F ncg
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]
ZnF t

Va

>0

RT
znFlogpe

~ 39 mV
(for z,=+1, room temp.)




Model of Steady-State Electrodiffusion through Membranes
Note: In x = 2.303 logo x

& logpe = 1/2.303

Inside Cn +
I
G, RT ~ 59 mV
Membrane In Vin znFlogype (for z,=+1, room temp.)
_|_
Vi _I
Outside i v B
S i RT . ¢
Nernst Equilibrium Potential V,, = In >
zF g
. . 1
Electrical Conductivity G, = >0

/d dx =
o Upz2F2c,(x)



Mechanical analog for electrodiffusive equilibrium

Y(x, 00)
- Analog to gravitational potential energy
\/ (no negative concentrations!)
\/ 0*Y(x,t) 1

——— 2 = =N z,Fe,(z,t

0x? € Zn: nFen(2,1)
c(x, o0)

Temperature
increases
Figure 7.6 The spatial distribu-

tion of electric potential and ion
concentration at electrodiffusive
equilibrium for different tempera-

tures.




How is the Nernst potential generated?

Assumption: Single permeable ionic species (positively charged)

Ci1 <G

Side 1

Side 2

Side 1

4 V.

tHt+t+

-~
~

Side 2

t <0

\
~

Figure 7.16 Illustration
of the generation of
the Nernst equilibrium
potential. A bath is
separated into two
compartments by a
membrane permeable
only to ion n.

- Note that the creation of a significant V;, need

not require significant concentration changes



Resting Potential

h S /v
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Figure 1.1 Figure 1.8

- Independent of whether a cell “fires” an action potential or not, note that
there is a baseline trans-membrane potential (“resting potential”) V2



Resting Potential
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- What is the basis for
such a resting potential?



Problem

7.2 As shown in Figure 7.53, compartments 1 and 2 contain well-stirred
solutions of potassium chloride and are separated by a membrane that
is permeable to only potassium. The potential between compartment 1
and 2 is V,,,. The concentrations of KCIl in compartments 1 and 2 are 100
mmol/L and 10 mmol/L, respectively.

1

compartment 1
100 mmol /L
KCl

compartment 2

10 1/L ‘
I;l{lg(l) / Figure 7.53 Two compartments separated by

a membrane that is permeable to potassium
only (Exercise 7.2).

e ——

a. Determine the equilibrium value of V,,, and give a physical explana-
tion of the sign of the potential.

b. A battery is now connected to the solutions, so that V,,, = —30 mV. In
which direction will current flow through the membrane? Explain.

c. Draw an equivalent electrical network for the condition indicated in
part b. Label the nodes that represent compartments 1 and 2, V,,,, and
label I,,, defined as the current that flows through the membrane in
the direction from compartment 1 to compartment 2.



compartment 1

Problems SOL

a. Since only potassium permeates the membrane at equilibrium, the membrane po-

tential must equal the potassium equilibrium potential. Assuming normal room
temperature of 25°C,

2
Vi = Vk = 59log; (C—If) = 5910g0(1/10) = =59 mV.
Ck
At equilibrium, the flux due to diffusion (which is from volume 1 to volume 2) is
balanced by drift of potassium ions (which must be from volume 2 to volume 1).
The driftis in this direction if the potential in volume 1 is less than the potential in

volume 2 so that the positive potassium ions flow from a higher to a lower electric
potential.

c. Application of a battery to the two volumes completes an electric circuit consist-
ing of the battery and the membrane as shown in Figure 7.1. The membrane is
represented by an equivalent conductance and a battery in series.

Vin
+ 1
|
|

Figure 7.1: Electric network model of membrane and source
(Exercise 7.2).

compartment 2

b. The network shows that I,, = Gx(Vin — Vx). When V,,, > Vi, I > 0, i.e., the
current flows from the left to the right compartment. But, V;,, = —30 mV and
Vk = =59 mV, so that Vi, — Vk = =30+ 59 = 29 mV and I, > O.



Problem

L

7.6

Describe the distinctions between the following terms that refer to
ion transport across a cellular membrane: electrodiffusive equilibrium,
steady state, resting conditions, and cellular quasi-equilibrium.

The following is a discussion of electroneutrality (Nicholls et al., 1992):

The intracellular and extracellular solutions must each be electrically neutral.
For example, a solution of chloride ions alone cannot exist; their charges must
be balanced by an equal number of positive charges on cations such as sodium

or potassium (otherwise electrical repulsion would literally blow the solution
apart).

Briefly critique this discussion of electroneutrality.



Problems SOL

Exercise 7.5 In steady state the ionic flux through the membrane, the concentration
of ions in the membrane, and the voltage across the membrane are all constant with
respect to time. Electrodiffusive equilibrium requires all of the conditions for steady
state plus the condition that the ionic flux through the membrane is zero. At equilib-
rium, the potential across the membrane equals the Nernst equilibrium potentials of
each permeant ionic species. Rest requires all of the conditions for steady state plus
the condition that the net current through the membrane (total across ionic species)
is zero. Quasi-equilibrium requires all of the conditions for steady state plus that the
net flux of each ionic species (summed across all of the transport mechanisms for that
species) is zero.

As an example, suppose external electrodes pass a constant current through the
membrane of a cell. For this case, the membrane could come to a steady-state condi-
tion. It could be at electrodiffusive equilibrium if the membrane contains active trans-
port mechanisms to carry all of the current from the external electrodes through the
membrane. By definition, the cell is not at rest. Furthermore, the cell could not be in
gquasi-equilibrium, since the external current must be carried through the membrane by
some ionic species.



Problems SOL

Exercise 7.6 The statement is largely correct except for the parenthetical phrase. The
solution would not blow up. The excess charges would repel each other and would
ultimately reside on the boundaries of the vessel enclosing the solution.






