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Assumptions/geometry above, along
with Kirchoff’s & Ohm’ s Laws lead

us to the...

THE Core — Conductor Equation

82 V.',",(Z, t)
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= (ry + 1) Kpn(2,t) — r,Ke(2, 1)

- Relates spatial change in transmembrane potential to current flowing
through the membrane



Some Implications

Consider no external electrodes

(i.,e., K, = 0):
e
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Conservation of charge requires: ~ Ti(z,t) + Io(z,t) =0
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Some useful interrelationships...

Relation between extracellular and intracellular potentials
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Av, — Av; = Av, + QA’UO = Um(21) — Vm(22)

To
To

Av, = (Vm(21) — Vm(22))

let z; — —oo: then v,(21) — 0 and vy, (21) — V2

B, = v5(22) = (1) = vo(22) = - (V2 = vm(22))
vo(22) = ——2— (vm(z2) — V2)

To + T;



Propagation at Constant Velocity

Assumption: Membrane potential behaves in a — +
wave-like fashion (const. velocity) Vm (Z’ t) f (t
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P as to the form (i.e., shape) of f here
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Propagation at Constant Velocity Vinl(z,t) = f (t 4 ;)
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Propagation at Constant Velocity

Vin(2, t) =f(t-*_- %)
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Ky (2. t) = 1 0° Vel 8. T)
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Think carefully about what the
diacritical dot means here!

Wave equation
(differential form)

- So when we assume a wave propagating at
constant velocity, the core conductor model
yields explicit time relationships as well
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Connecting action potential-type waves
to the core conductor model
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Conduction Velocity (unmyelinated axon)

_ 1 %Vmzb) Jm(2,t) = Km(2, )/ (2TrQ)
bmiz, ) = (Yo + ¥i) V2 ot2 ’

05 Vi (2, £) J L2

=21ra(r, + v;)v°

Right-side: constant, velocity
depends only upon axon
diameter and fluid resistances

Left-side: constant, only depends
upon electrical properties of
membrane per unit area



Conduction Velocity (unmyelinated axon) Change r,

Axon in:

seawater

oil
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Conduction Velocity (unmyelinated axon) Change r;
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Figure 2.15

-~ ‘Space clamp’



Conduction Velocity (unmyelinated axon)

Assume r; >> r,

21T ariv? = Ky,
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—> thicker axons = faster propagation

1000



Core Conductor Model
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Decremental conduction
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Core-Conductor Model (starting point) = Model for electrically large cells
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THE Core — Conductor Equation

0*Vin(2,1)
022

= (ro + 1) Kin(2,1) — ro K. (2, 1)



Decremental conduction Decrement-free conduction
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Note dynamics of response....
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1. Linear (to a point)
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2. Delay apparent



Dissolution Transport Transport Carrier- Pumps

and diffusion through through mediated
through water gated ion transport
lipid bilayer channels channels
Intracellular A

e | oA g
Y Y

Extracellular ' '
Figure 2.19

|dea: Membrane not only allows for charge transport, but also charge separation




Cell Membrane = Capacitor

= Steady-state electrodiffusion
cause charge buildup on both
sides of membrane

= Charge separation acts like
- parallel-plate capacitor
(C~ 1 uF/cm?)

Outside Inside - Outside

+ + + + +
|
+ + + + +

Hobbie & Roth



Lipid Bilayer = Dielectric

- Lipid bilayer is an insulator
(i.e., acts as a dielectric w/ const. k)
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Circuit Representation
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Resistor and capacitor in series
- RC time constant

Hobbie & Roth
Weiss



Review: Capacitance

= Charging a parallel-plate capacitor

em—— (b)

| a) :
Current

A Vbal

The charge escalator moves charge from
one plate to the other. AV, increases as
the charge separation increases.

Q = CAV: (charge on a capacitor)

When AV, = AV, _, the current stops
and the capacitor is fully charged.

- Stored charge is proportional to potential
difference. Constant of proportionality is
characterizes the “capacitance”

Knight



Review: RC Circuits
KVL (combined w/ Ohm’s law):

AVt AV = %—-

LB

IR=0

Negative because resistor current

I = d[ removes charge from capacitor
dQ Q do 1
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(a) Before the switch closes

The switch will~-..,
close atr = 0.

¥
&
+<1 ++ R
N e =0 AVR = O
Charge Q,
AV, = Q,/C
(b) After the switch closes
—
| R
CRMTIIETI 1 I AV, = —IR

The current is reducing the
charge on the capacitor.

Charge Q
AV,,, = 0IC

Knight



Review: RC Circuits

Q — QO e-—t/RC

0= CAV.

T =RC

“RC time
constant”

AVC T AV()@_I/T

- Resistor dissipates energy stored in the capacitor

Current through the capacitor?

_dQ dV.
I= dt IC:C—C

dt
Q=CVco

(a)
Charge Q

_Qﬂ :'.

An exponential
L+"decay curve
' The charge has
decreased to
" 37% of its initial
value at t = 7.

The charge has
decreased to

D37 A - = 4 N #713% of its initial

value at ¢ = 27.

QA30 A = im @i clemme— =
0 5 . : t
0 T 2T 3T
(b)
Current /
I, The current has decreased to

37% of its initial value at ¢t = 7.

Knight



Review: RC Circuits

DC (some energy initially stored
via charged capacitor) 2 KCL

av v
Catr="

AC (sinusoidally-driven at o,
steady-state) 2 KVL

o
o

100%

T=RC

o
“RC time
. 36.8%}
constant
13.5%} i
o L i i 1 -5%0
1.850 . 4 - == 20.7%
Time
Complex impedance
7 — R (4 Think: RLC without
the inductor
w(C'

Wikipedia (RC circuit)



small, uniform . dvm
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Ty = —m  membrane time constant
m independent of cell size

see Weiss Figure 3.8
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Cable Model - History

- First solved by William Thomson (aka Lord Kelvin) in ~1855

- Motivated by Atlantic submarine cable for intercontinental telegraphy

~~ Qcean ————— Insulation

/

Conductor

|.|+

Transmitter Receiver
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Cable Model - Overview

- Uses the Core Conductor model as underlying basis

- Assumes membrane that it can be described as a parallel capacitance and conductance

- Linear

K,\(z,t)Az

!

Core Conductor Model

gmAz

Az = Vin(z,1)







