Cellular Electrodynamics

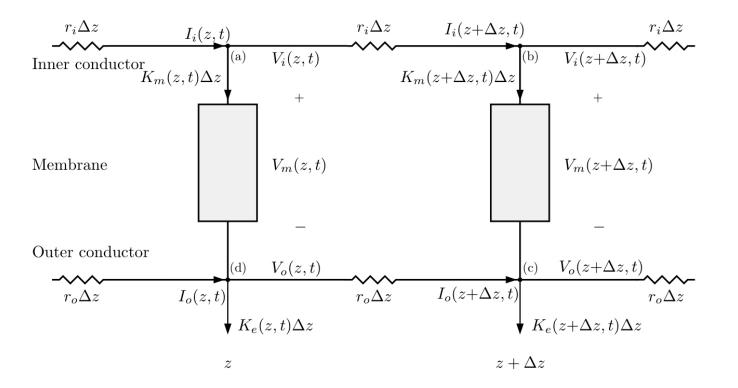
Instructor: Prof. Christopher Bergevin (cberge@yorku.ca)

Website:

http://www.yorku.ca/cberge/4080W2020.html

York University Winter 2020 BPHS 4080 Lecture X





THE Core – Conductor Equation

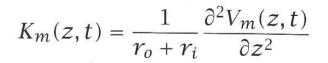
Assumptions/geometry above, along with Kirchoff's & Ohm's Laws lead us to the...

$$\frac{\partial^2 V_m(z,t)}{\partial z^2} = (r_o + r_i) K_m(z,t) - r_o K_e(z,t)$$

 \rightarrow Relates spatial change in transmembrane potential to current flowing through the membrane

Some Implications

Consider no external electrodes (i.e., $K_e = 0$):



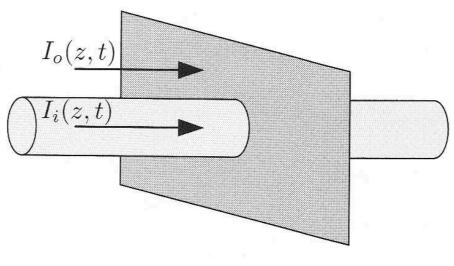


Figure 2.9

Conservation of charge requires: $I_i(z,t) + I_o(z,t) = 0$

Core – **Conductor** Equations

$$\begin{aligned} \frac{\partial I_i(z,t)}{\partial z} &= -K_m(z,t) \\ \frac{\partial I_o(z,t)}{\partial z} &= K_m(z,t) - K_e(z,t) \\ \frac{\partial V_i(z,t)}{\partial z} &= -r_i I_i(z,t) \\ \frac{\partial V_o(z,t)}{\partial z} &= -r_o I_o(z,t) \end{aligned} \qquad I_o(z,t) = \frac{1}{\gamma_o + \gamma_i} \frac{\partial V_m(z,t)}{\partial z}$$

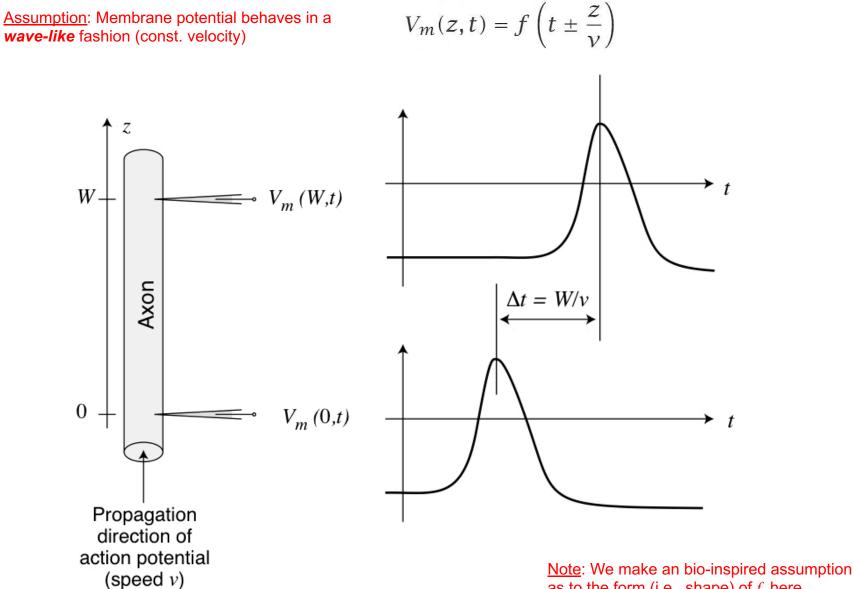
Some useful interrelationships...

$$\underbrace{v_m(z_1)^{+\bullet} - \Delta v_i + \bullet_{v_m(z_2)}}_{-\bullet - \Delta v_o + \bullet_{-}}$$

KVL:

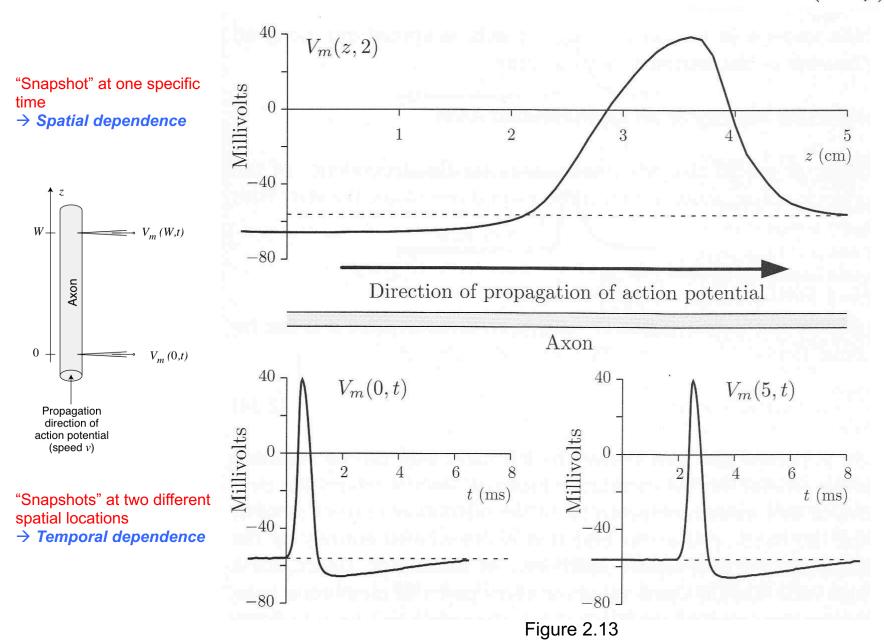
 $v_m(z_2) + \Delta v_o - v_m(z_1) - \Delta v_i = 0$ $\Delta v_o - \Delta v_i = v_m(z_1) - v_m(z_2)$ $\Delta v_i = -\int_{z_i}^{z_2} r_i I_i dz = -r_i \int_{z_i}^{z_2} I_i dz$ $\Delta v_o = -\int_{z_0}^{z_2} r_o I_o dz = -r_o \int_{z_0}^{z_2} I_o dz$ $I_0 = -I_i$ $\Delta v_i = -r_i \int_{z_i}^{z_2} I_i dz = -r_i \int_{z_i}^{z_2} (-I_o) dz = -\frac{r_i}{r} \Delta v_o$ $\Delta v_o - \Delta v_i = \Delta v_o + \frac{r_i}{r} \Delta v_o = v_m(z_1) - v_m(z_2)$ $\Delta v_o = \frac{r_o}{r_1 + r_2} \left(v_m(z_1) - v_m(z_2) \right)$ let $z_1 \to -\infty$: then $v_o(z_1) \to 0$ and $v_m(z_1) \to V_m^o$ $\Delta v_o = v_o(z_2) - v_o(z_1) = v_o(z_2) = \frac{r_o}{r_o + r_i} \left(V_m^o - v_m(z_2) \right)$ $v_o(z_2) = -\frac{r_o}{r_o + r_i} \left(v_m(z_2) - V_m^o \right)$

Propagation at Constant Velocity



as to the form (i.e., shape) of f here

Propagation at Constant Velocity



 $V_m(z,t) = f\left(t \pm \frac{z}{v}\right)$

Propagation at Constant Velocity

$$V_m(z,t) = f\left(t \pm \frac{z}{\nu}\right)$$

Think carefully about what the diacritical dot means here!

$$\frac{\partial V_m(z,t)}{\partial z} = \pm \frac{1}{\nu} \dot{f} \left(t \pm \frac{z}{\nu} \right) \quad \text{and} \quad \frac{\partial V_m(z,t)}{\partial t} = \dot{f} \left(t \pm \frac{z}{\nu} \right)$$

$$\frac{\partial^2 V_m(z,t)}{\partial z^2} = \frac{1}{\nu^2} \frac{\partial^2 V_m}{\partial t^2}$$

Wave equation (differential form)

$$I_o(z,t) = \pm \frac{1}{(r_o + r_i)\nu} \frac{\partial V_m(z,t)}{\partial t}$$

and

$$K_m(z,t) = \frac{1}{(r_o + r_i) v^2} \frac{\partial^2 V_m(z,t)}{\partial t^2}$$

 \rightarrow So when we assume a wave propagating at constant velocity, the core conductor model yields explicit time relationships as well

$$I_o(z,t) = \frac{1}{r_o + r_i} \frac{\partial V_m(z,t)}{\partial z}$$

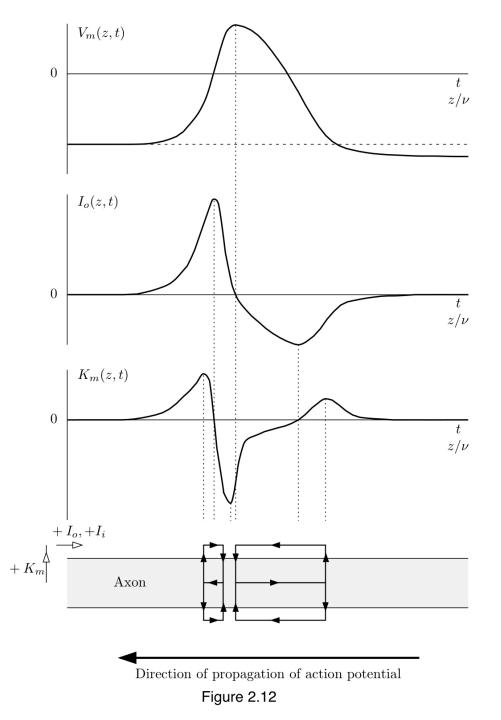
Connecting action potential-type waves to the core conductor model

$$I_o(z,t) = \pm \frac{1}{(r_o + r_i)\nu} \frac{\partial V_m(z,t)}{\partial t}$$

and

$$K_m(z,t) = \frac{1}{(r_o + r_i) \nu^2} \frac{\partial^2 V_m(z,t)}{\partial t^2}$$

 $I_i(z,t) + I_o(z,t) = 0$



<u>Conduction Velocity</u> (unmyelinated axon)

$$K_m(z,t) = \frac{1}{(r_o + r_i)v^2} \frac{\partial^2 V_m(z,t)}{\partial t^2} \qquad \qquad J_m(z,t) = K_m(z,t)/(2\pi a)$$

$$\frac{\partial^2 V_m(z,t)/\partial t^2}{J_m(z,t)} = 2\pi a (r_o + r_i) v^2$$

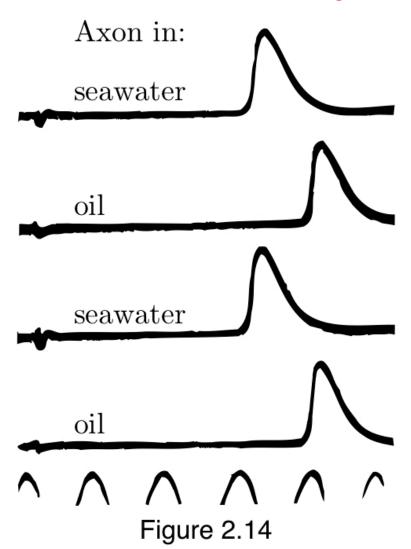
Left-side: constant, only depends upon electrical properties of membrane per unit area <u>Right-side</u>: constant, velocity depends only upon axon diameter and fluid resistances

<u>Conduction Velocity</u> (unmyelinated axon)

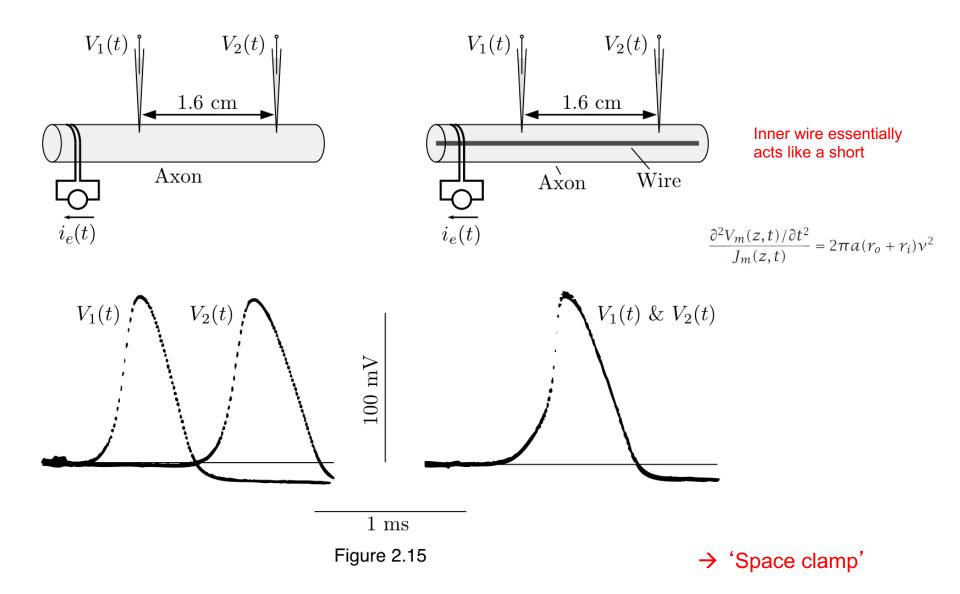
Change *r*_o

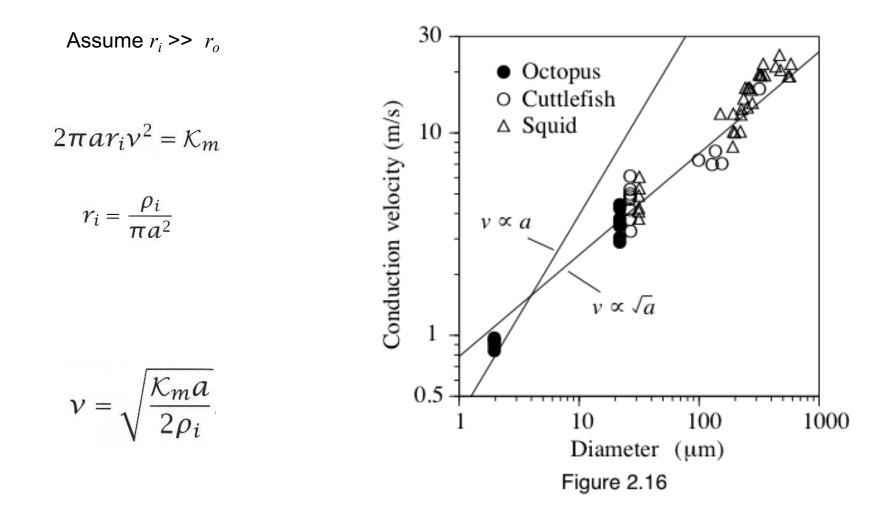
$$\frac{\partial^2 V_m(z,t)/\partial t^2}{J_m(z,t)} = 2\pi a (r_o + r_i) v^2$$

Changing resistivity affects conduction velocity



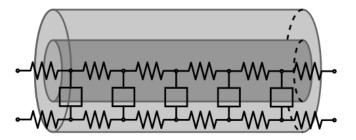
Change r_i





 \rightarrow thicker axons = faster propagation

Core Conductor Model



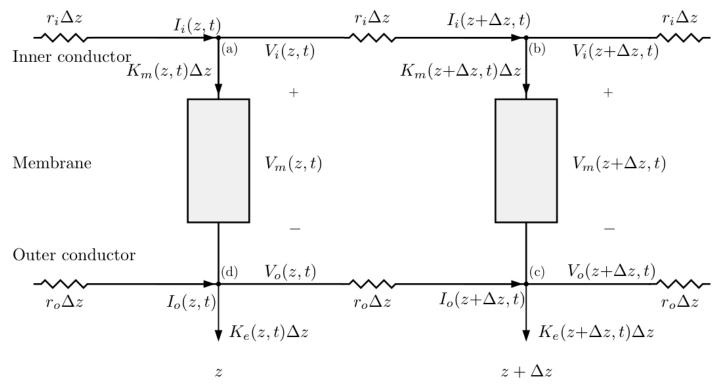
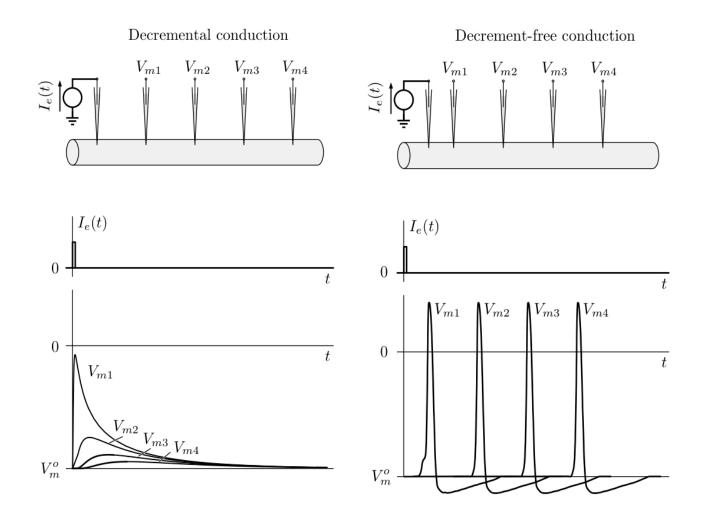
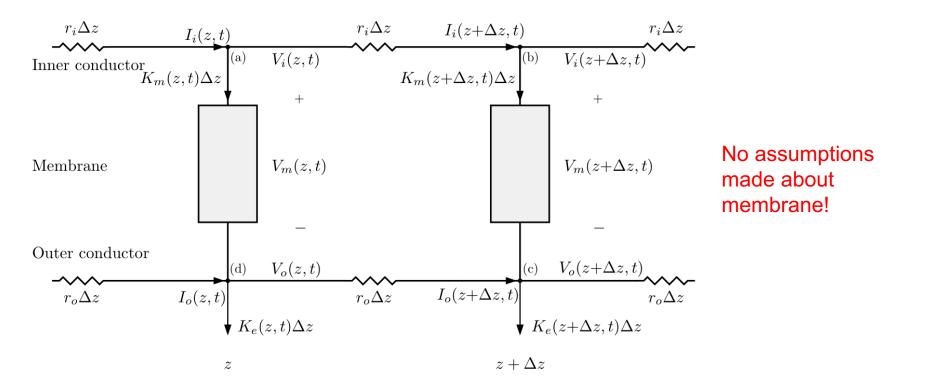


Figure 2.7

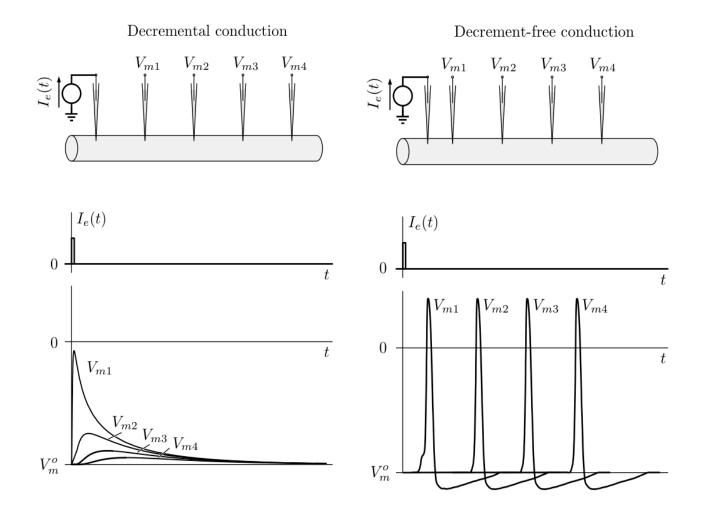


Core-Conductor Model (starting point) → Model for electrically large cells

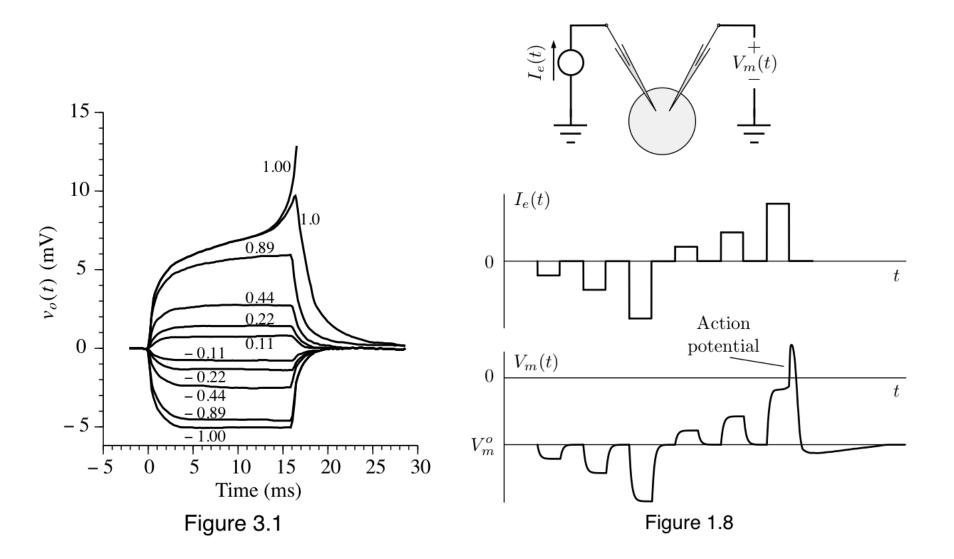


THE Core – Conductor Equation

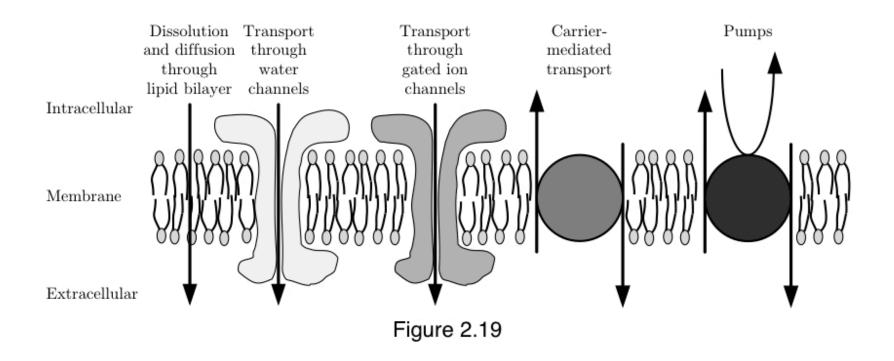
$$\frac{\partial^2 V_m(z,t)}{\partial z^2} = (r_o + r_i) K_m(z,t) - r_o K_e(z,t)$$



Note dynamics of response....

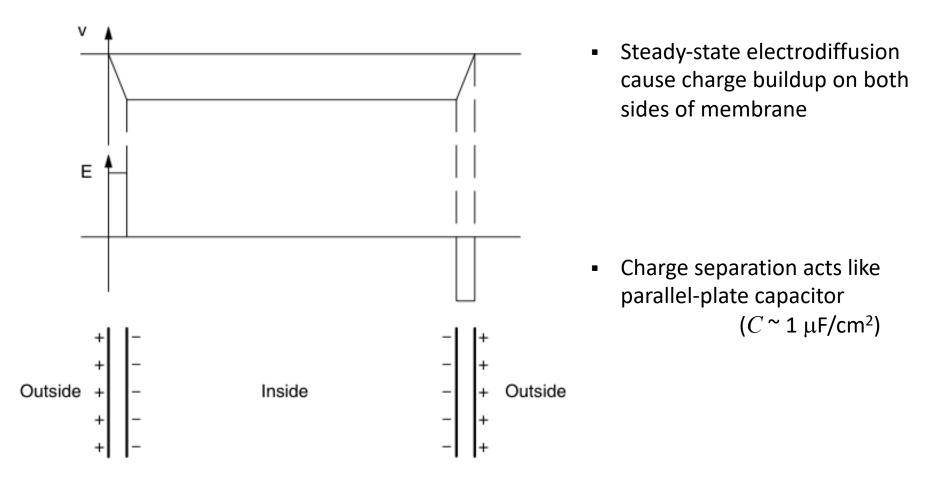


2. Delay apparent

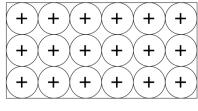


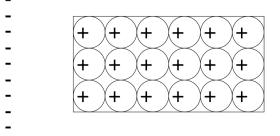
Idea: Membrane not only allows for charge transport, but also charge separation

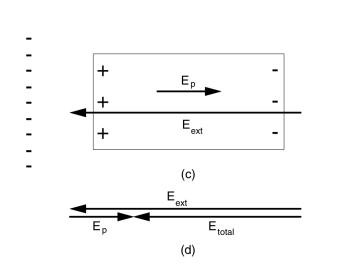
<u>Cell Membrane = Capacitor</u>



<u>Lipid Bilayer = Dielectric</u>



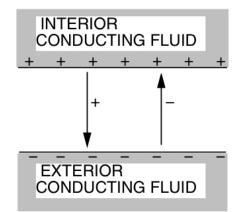


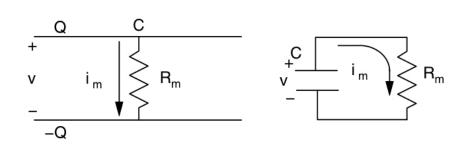


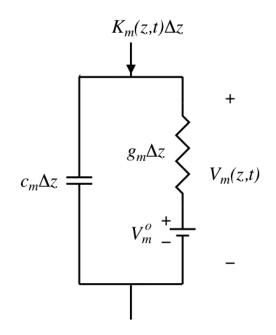
- Lipid bilayer is an insulator (i.e., acts as a dielectric w/ const. κ)

- κ~3-7, meaning more charge separation can occur (higher capacitance)

Circuit Representation





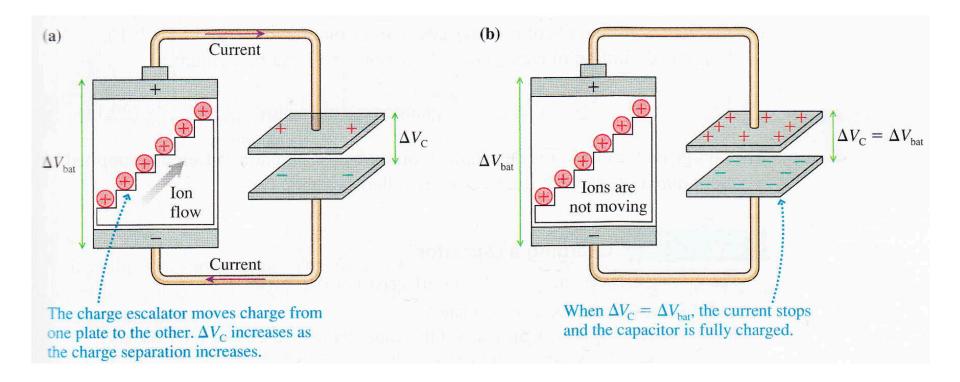


Resistor and capacitor in series \rightarrow RC time constant

Hobbie & Roth Weiss

<u>Review</u>: Capacitance

Charging a parallel-plate capacitor



 $Q = C \Delta V_{\rm C}$ (charge on a capacitor)

→ Stored charge is proportional to potential difference. Constant of proportionality is characterizes the "capacitance"

Review: RC Circuits

KVL (combined w/ Ohm's law):

$$\Delta V_{\rm cap} + \Delta V_{\rm res} = \frac{Q}{C} - IR = 0$$

$$I = -\frac{dQ}{dt}$$

Negative because resistor current removes charge from capacitor

$$\frac{dQ}{dt} + \frac{Q}{RC} = 0 \qquad \qquad \frac{dQ}{Q} = -\frac{1}{RC}dt$$

$$\int_{Q_0}^{Q} \frac{dQ}{Q} = -\frac{1}{RC} \int_{0}^{t} dt$$

$$\ln Q \Big|_{Q_0}^Q = \ln Q - \ln Q_0 = \ln \left(\frac{Q}{Q_0}\right) = -\frac{t}{RC}$$

$$Q = Q_0 e^{-t/RC}$$

(a) Before the switch closes The switch will.... close at t = 0. $I = 0 \underbrace{\bigotimes}_{\Delta V_{\rm R}}^{R} = 0$ Charge Q_0 $\Delta V_0 = Q_0/C$ (b) After the switch closes $R \leq \Delta V_{\rm res} = -IR$ C

The current is reducing the

charge on the capacitor.

Charge Q

 $\Delta V_{\rm cap} = Q/C$

Knight

<u>Review</u>: RC Circuits

$$Q = Q_0 e^{-t/RC}$$

$$Q = C \Delta V_{\rm C}$$

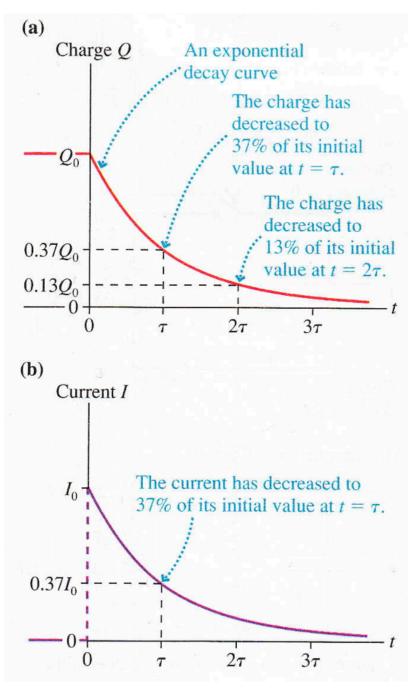
 $\tau = RC \qquad \Delta V_{\rm C} = \Delta V_0 e^{-t/\tau}$

"RC time constant"

 \rightarrow Resistor dissipates energy stored in the capacitor

Current through the capacitor?

$$I = \frac{dQ}{dt} \qquad I_C = C \frac{dV_C}{dt}$$
$$Q = C V_C$$



<u>Review</u>: RC Circuits

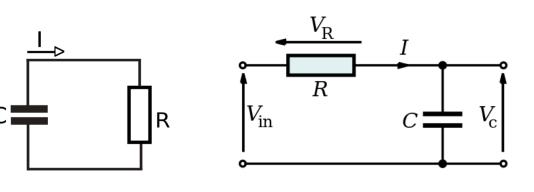
DC (some energy initially stored via charged capacitor) \rightarrow KCL

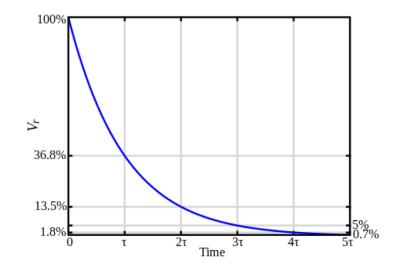
$$C\frac{dV}{dt} + \frac{V}{R} = 0$$

$$V(t) = V_o e^{-\frac{t}{RC}}$$

$$\tau = RC$$

"RC time constant"



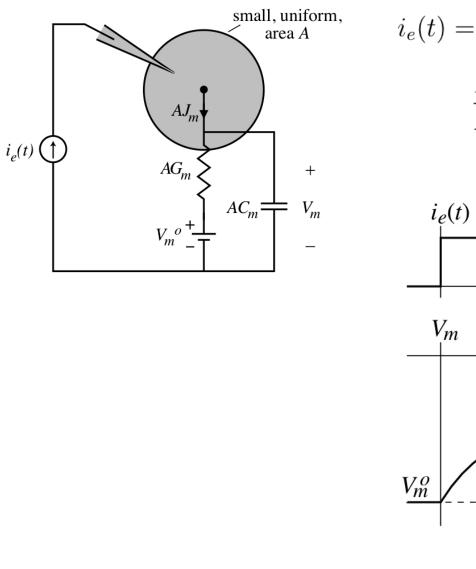


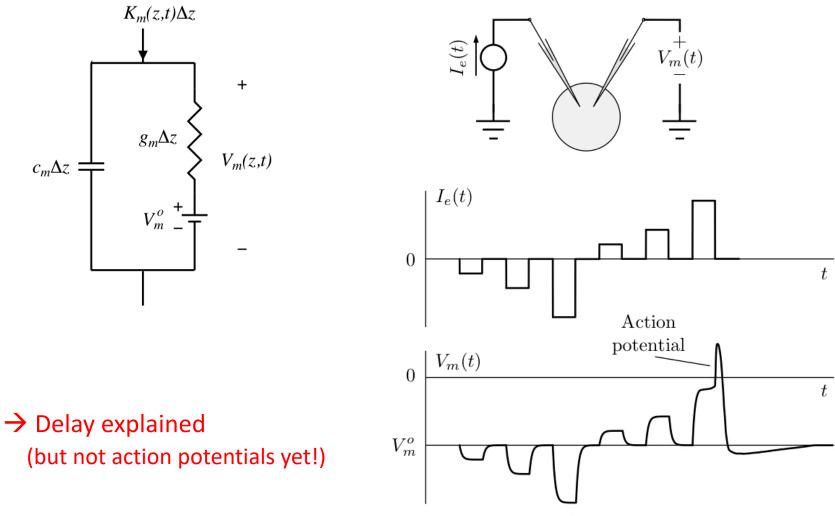
Complex impedance

AC (sinusoidally-driven at ω , steady-state) → KVL

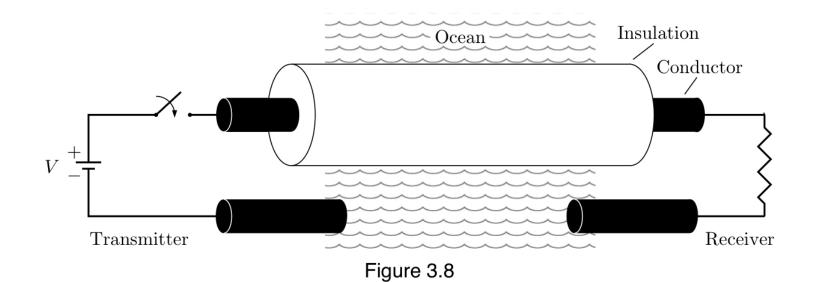
$$Z = R - \frac{i}{\omega C}$$

Think: RLC without the inductor





- First solved by William Thomson (aka Lord Kelvin) in ~1855
- Motivated by Atlantic submarine cable for intercontinental telegraphy



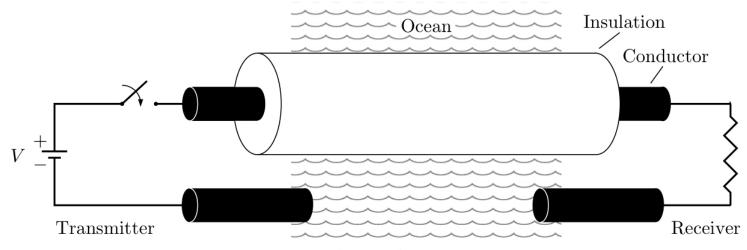
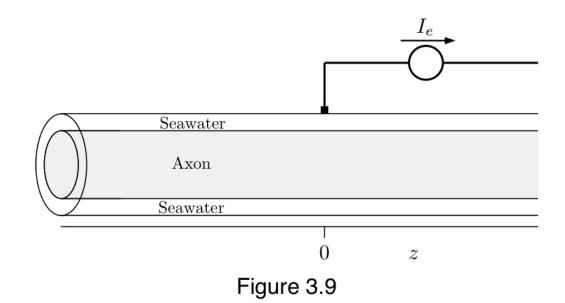


Figure 3.8



- Uses the Core Conductor model as underlying basis
- Assumes membrane that it can be described as a parallel capacitance and conductance

- <u>Linear</u>

