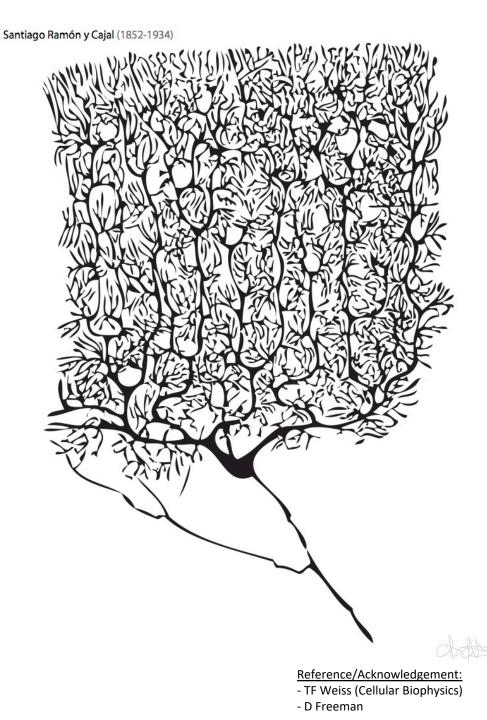
Cellular Electrodynamics

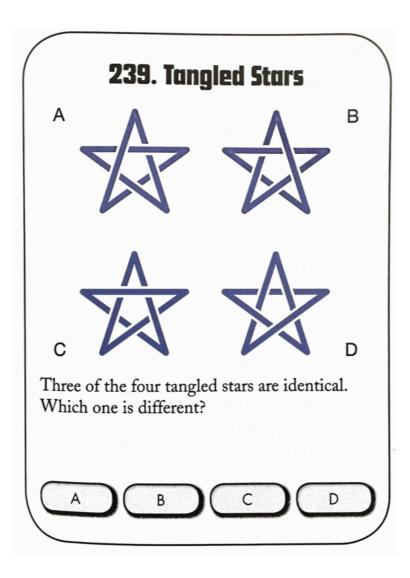
Instructor: Prof. Christopher Bergevin (cberge@yorku.ca)

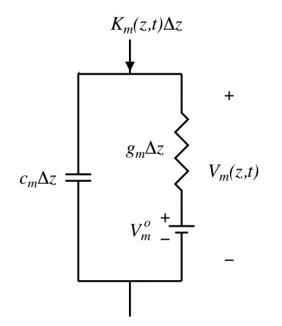
Website:

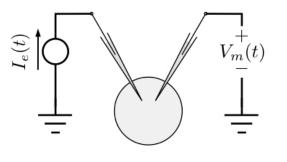
http://www.yorku.ca/cberge/4080W2020.html

York University Winter 2020 BPHS 4080 Lecture 15









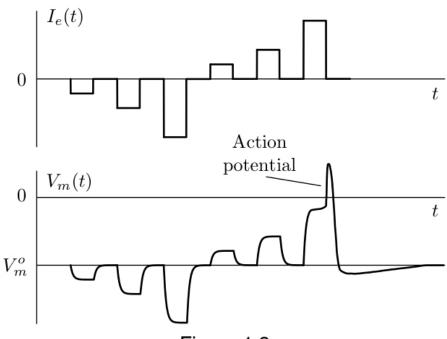
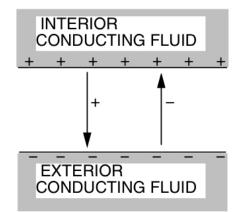
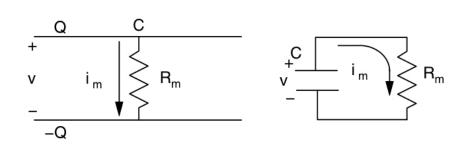


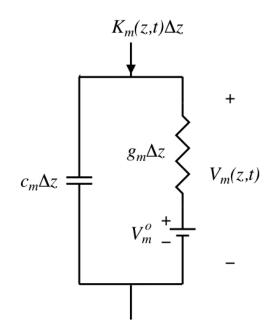
Figure 1.8

→ Cell membrane acts like an RC filter

Circuit Representation



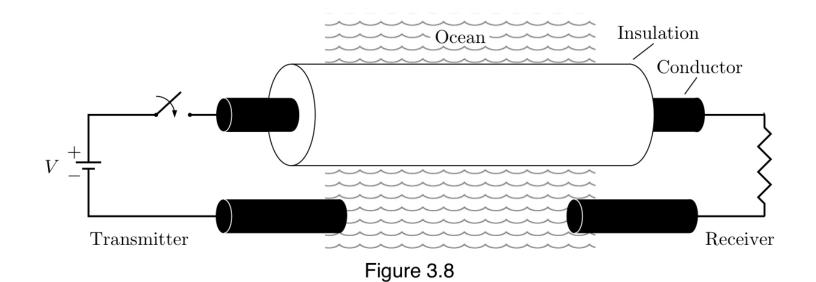


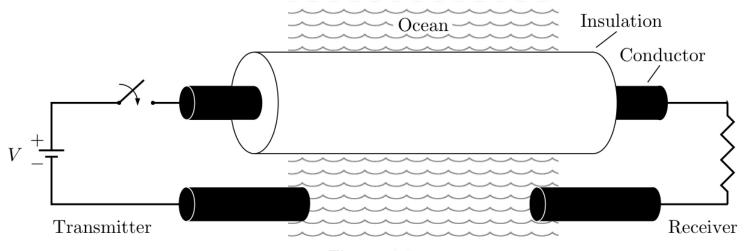


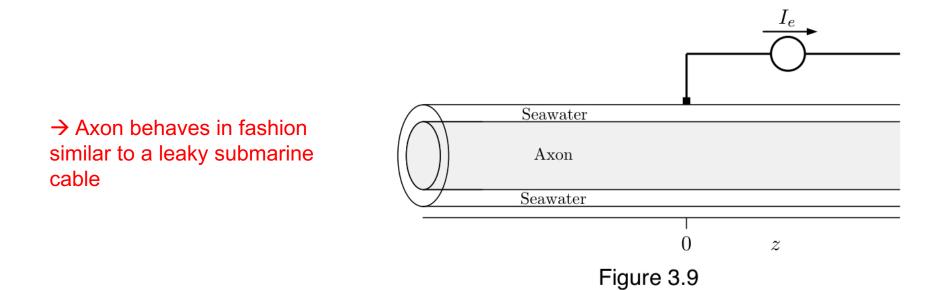
Resistor and capacitor in series \rightarrow RC time constant

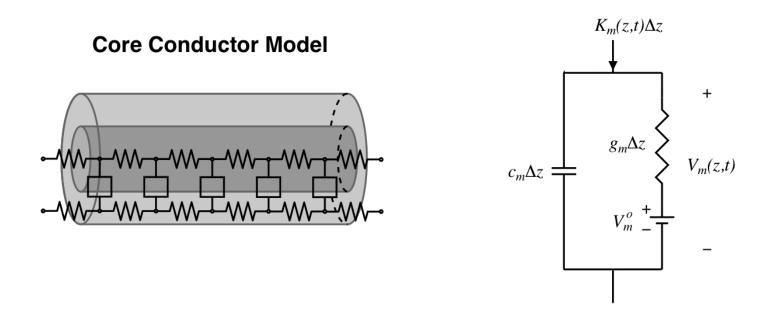
Hobbie & Roth Weiss

- First solved by William Thomson (aka Lord Kelvin) in ~1855
- Motivated by Atlantic submarine cable for intercontinental telegraphy

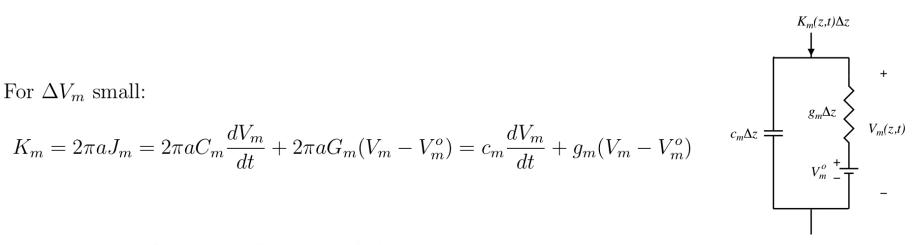








→ Combine together both "models"



Combine with core-conductor model:

$$\frac{\partial^2 V_m}{\partial z^2} = (r_o + r_i)K_m - r_o K_e = (r_o + r_i)\left[c_m \frac{\partial V_m}{\partial t} + g_m (V_m - V_m^o)\right] - r_o K_e$$

$$V_m + \frac{c_m}{g_m} \frac{\partial V_m}{\partial t} - \frac{1}{g_m(r_o + r_i)} \frac{\partial^2 V_m}{\partial z^2} = V_m^o + \frac{r_o}{g_m(r_o + r_i)} K_e$$

$$V_m + \frac{c_m}{g_m} \frac{\partial V_m}{\partial t} - \frac{1}{g_m(r_o + r_i)} \frac{\partial^2 V_m}{\partial z^2} = V_m^o + \frac{r_o}{g_m(r_o + r_i)} K_e$$

Introduce two new constants (τ_M and λ_C) $V_m + \tau_M \frac{\partial V_m}{\partial t} - \lambda_C^2 \frac{\partial^2 V_m}{\partial z^2} = V_m^o + r_o \lambda_C^2 K_e$

Let
$$V_m = v_m + V_m^o$$
: (incremental change in memb.
potential)
 $v_m + \tau_M \frac{\partial v_m}{\partial t} - \lambda_C^2 \frac{\partial^2 v_m}{\partial z^2} = r_o \lambda_C^2 K_e$ (Cable Equation)

Cable Equation

Let
$$v_m(z,t) = V_m(z,t) - V_m^o$$
 and $|v_m(z,t)| << |V_m^o|$:

$$v_m(z,t) + \tau_M \frac{\partial v_m(z,t)}{\partial t} - \lambda_C^2 \frac{\partial^2 v_m(z,t)}{\partial z^2} = r_o \lambda_C^2 K_e(z,t)$$

<u>Note</u>: Somewhat similar to the diffusion equation (but not exactly due to extra v_m term)

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

Constants:
$$\tau_M$$
 and λ_C $V_m + \tau_M \frac{\partial V_m}{\partial t} - \lambda_C^2 \frac{\partial^2 V_m}{\partial z^2} = V_m^o + r_o \lambda_C^2 K_e$

OTT

<u>Space constant</u> (λ_C) - property of cell, not just membrane

$$\lambda_C = \frac{1}{\sqrt{(r_i + r_o)g_m}} \quad \approx \sqrt{\frac{a}{2\rho_i G_m}} \quad (\text{assuming } r_o << r_i)$$

02-7-7

Wider axons \rightarrow Further propagation/less degradation

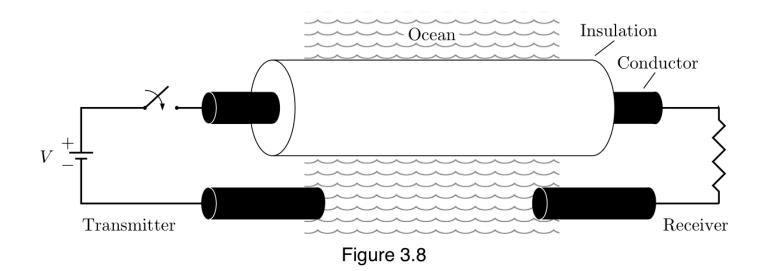
<u>Time constant</u> (τ_M) – independent of cellular dimensions

$$\tau_M = \frac{c_m}{g_m}$$

Cable Equation

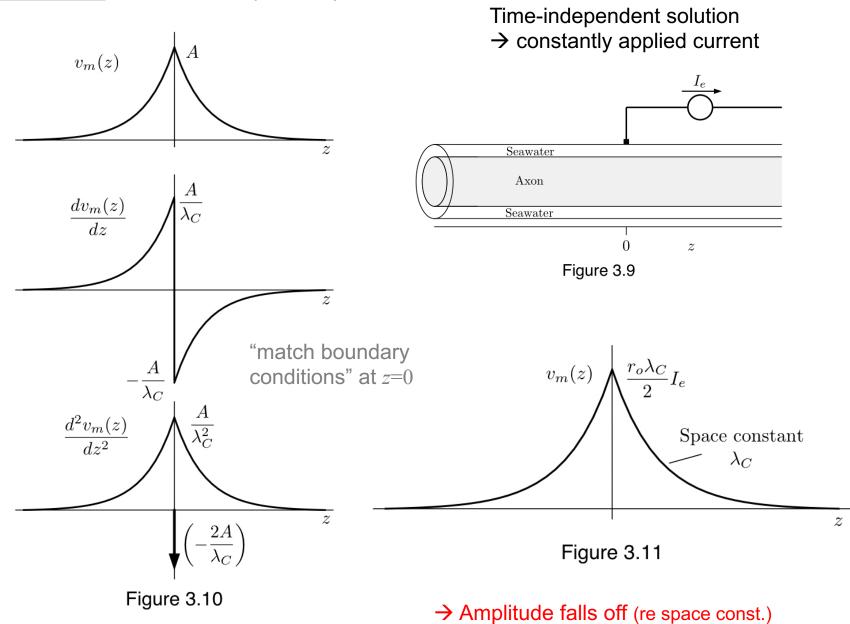
Let
$$v_m(z,t) = V_m(z,t) - V_m^o$$
 and $|v_m(z,t)| << |V_m^o|$:

$$v_m(z,t) + \tau_M \frac{\partial v_m(z,t)}{\partial t} - \lambda_C^2 \frac{\partial^2 v_m(z,t)}{\partial z^2} = r_o \lambda_C^2 K_e(z,t)$$

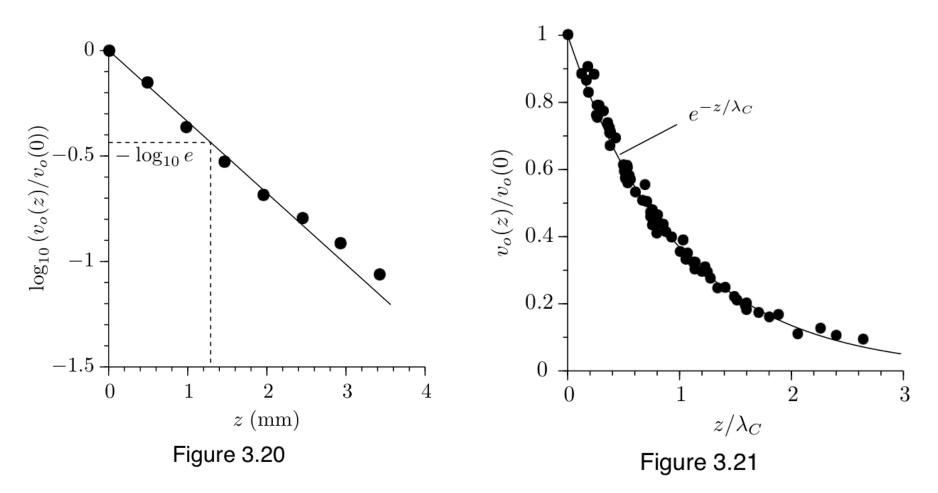


Axon $\leftarrow \rightarrow$ Leaky submarine 'cable'

<u>Cable Model</u> – Solution for spatial impulse



Cable Model - Space constant



→ Space constant (λ_c) typically on order of mm (even less for small unmyelinated fibers)

- \rightarrow Solutions allow for propagation, but in a decremental fashion
- → Axons alone are not good 'cables' for sending signals long-ish distances!

Cable Model - Solution for temporal & spatial impulse

Assume infinitesimal electrode and $i_e(t)$ brief so that

$$k_e(z,t) = 0$$
; if $z \neq 0$ or $t \neq 0$

For $t \neq 0$ or $z \neq 0$

$$v_m(z,t) + \tau_M \frac{\partial v_m}{\partial t} - \lambda_C^2 \frac{\partial^2 v_m}{\partial z^2} = 0$$

I	e	t
-		v

$$v_m(z,t) = w(z,t)e^{-t/\tau_M}$$

Then

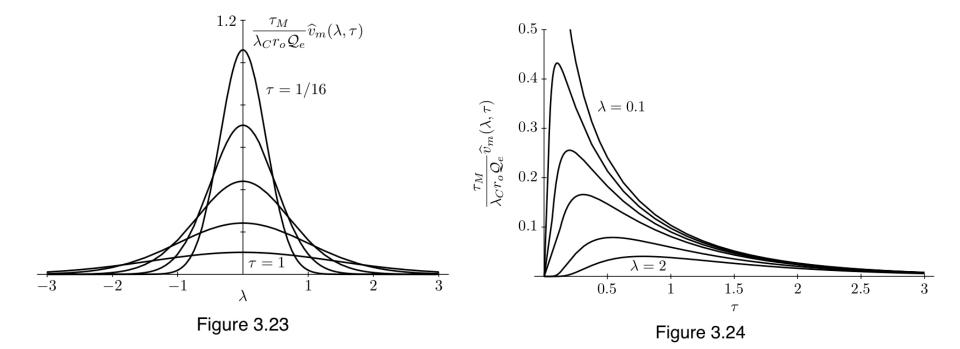
$$\frac{\partial v_m}{\partial t} = -\frac{1}{\tau_M} w(z,t) e^{-t/\tau_M} + \frac{\partial w}{\partial t} e^{-t/\tau_M}$$
$$\frac{\partial^2 v_m}{\partial z^2} = \frac{\partial^2 w}{\partial z^2} e^{-t/\tau_M}$$

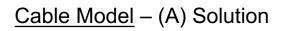
Substituting,

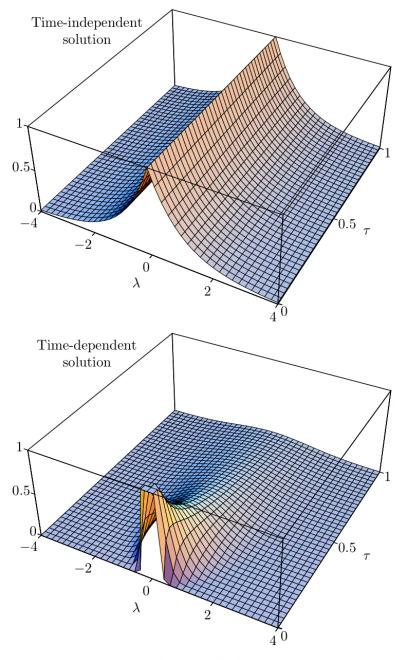
$$w(z,t)e^{-t/\tau_M} - w(z,t)e^{-t/\tau_M} + \tau_M \frac{\partial w}{\partial t}e^{-t/\tau_M} - \lambda_C^2 \frac{\partial^2 w}{\partial z^2}e^{-t/\tau_M} = 0$$

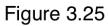
$$\tau_M \frac{\partial w}{\partial t} = \lambda_C^2 \frac{\partial^2 w}{\partial z^2}$$

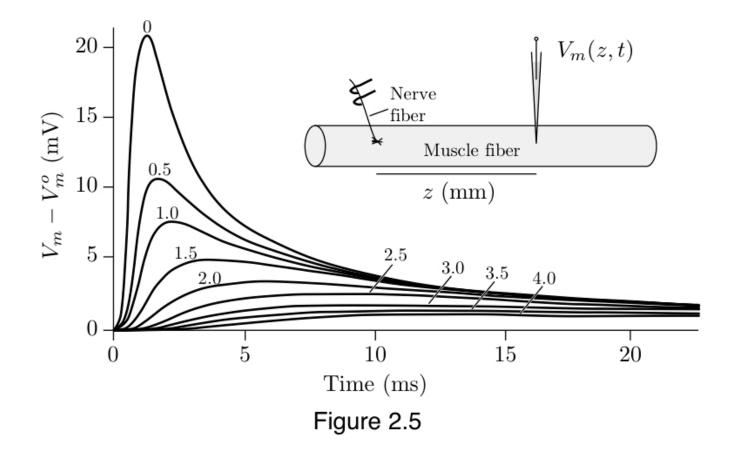
Solving cable equation (here w/ change of variable) is like diffusion equation!











\rightarrow Solutions allow for propagation, but in a decremental fashion

<u>Cable Model</u> – General Properties

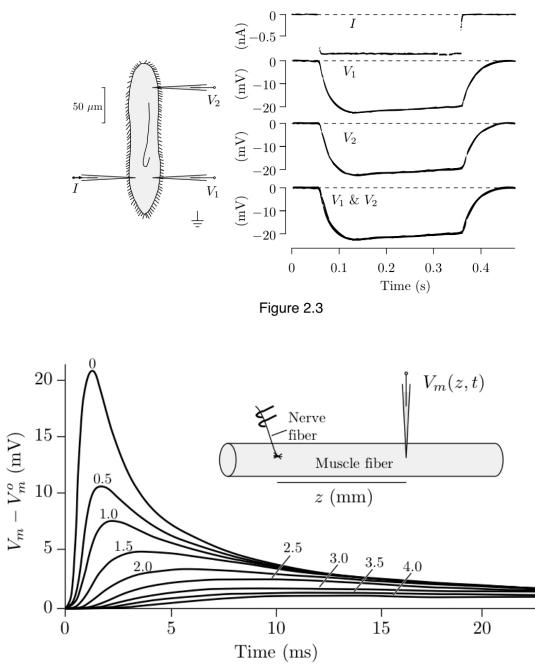
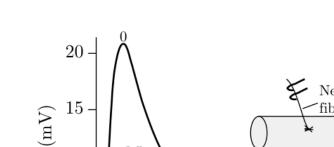
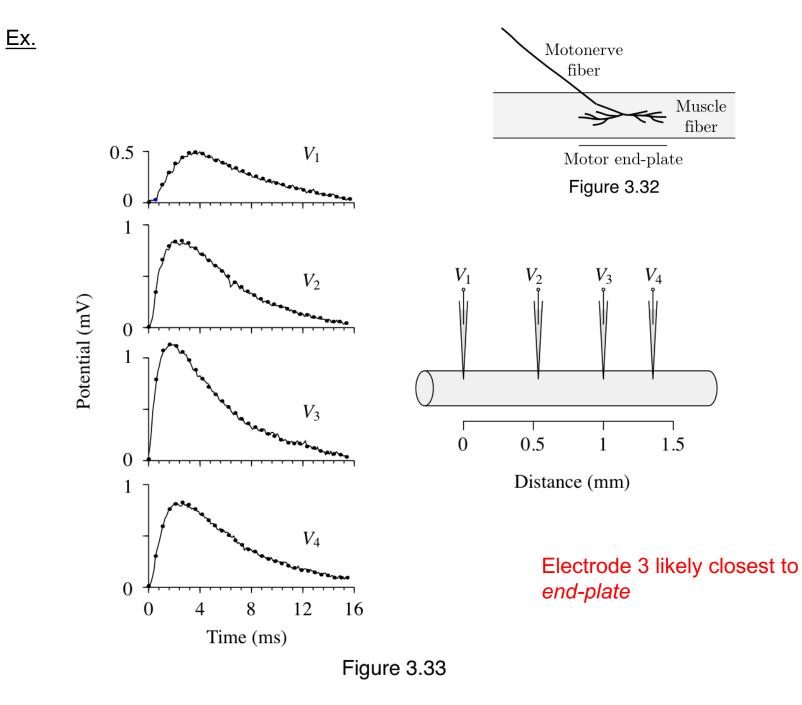


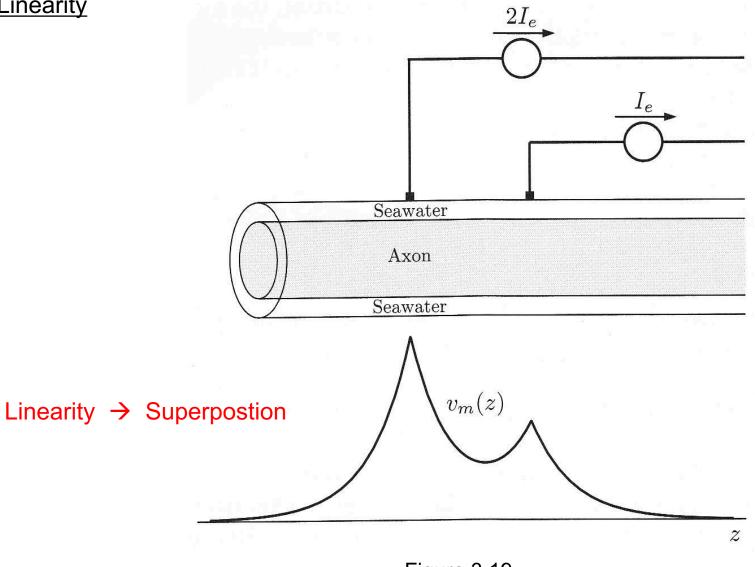
Figure 2.5

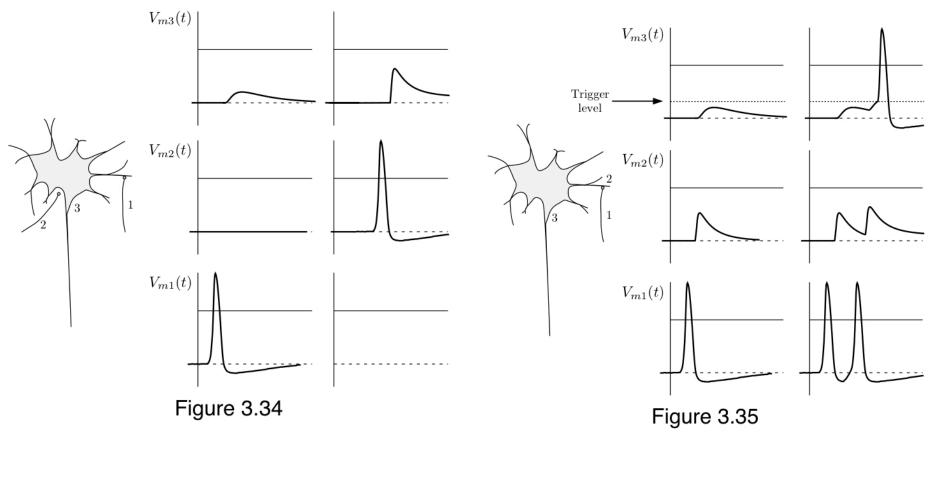
 \rightarrow Cellular dimensions re space constant (λ_C) determine whether a cell is electrically small or large





Linearity

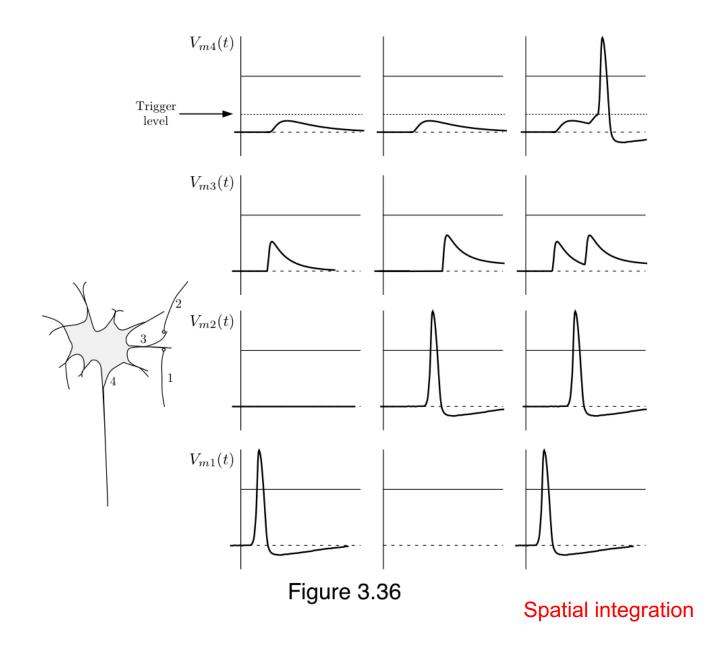




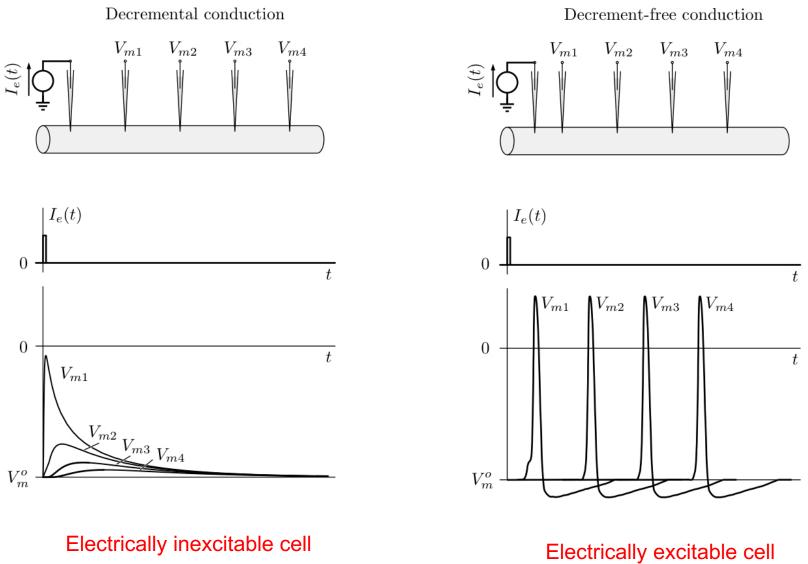
"Electronic distance"

"Temporal integration"

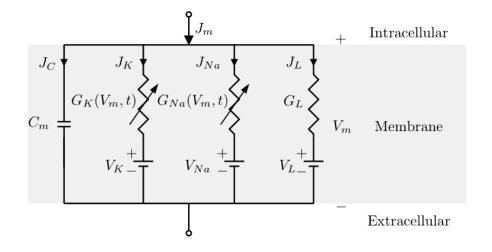
→ Key considerations with regard to synapses (i.e., inter-neuron communication)

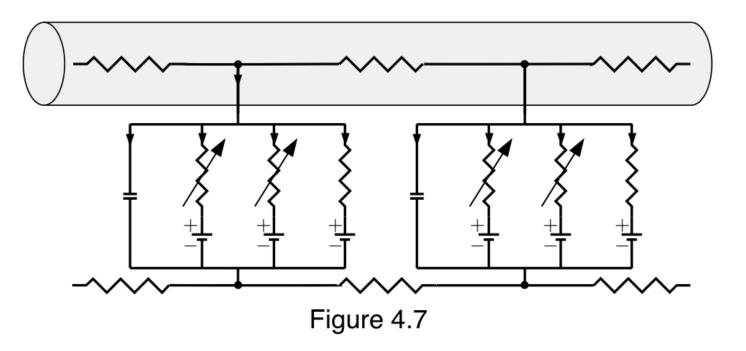


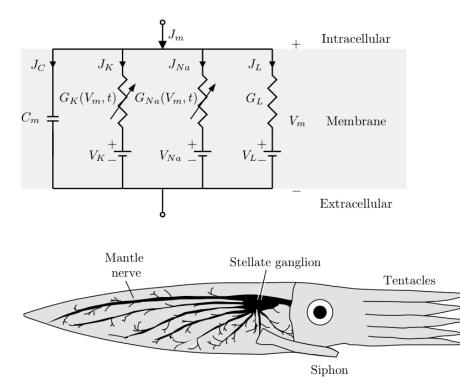
Looking Ahead: Hodgkin-Huxley



Hodgkin Huxley model







$$G_K(V_m, t) = \overline{G}_K n^4(V_m, t)$$

$$G_{Na}(V_m, t) = \overline{G}_{Na} m^3(V_m, t) h(V_m, t)$$

$$n(V_m, t) + \tau_n(V_m) \frac{dn(V_m, t)}{dt} = n_\infty(V_m)$$

$$m(V_m, t) + \tau_m(V_m) \frac{dm(V_m, t)}{dt} = m_\infty(V_m)$$

$$h(V_m, t) + \tau_h(V_m) \frac{dh(V_m, t)}{dt} = h_\infty(V_m)$$

