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Summary: HH Equations
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Four phases:

1. Local disturbance due to capacitance
(behaves like cable model)

2. Onset: V,, change triggers m
(increased Gy, take V,, with it)

m

3. Falloff: 4 turns off, n turns on
(both work to lower V,, back towards 7V,

m

basis for absolute refractory period)

4. Undershoot: increased G, pushes 1,
beyond 1?7,
(basis for relative refractory period)

Note: Membrane current (J,,) can be parsed
up into two components: a capacitive
current (J-) and an ionic current (J;,,)
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Note: Fairly little net current across membrane
(i.e., relatively few net ions transported)
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In vivo: For the same stimulus,

sometimes an AP fires,
sometimes it does not
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- What is mechanism for a
threshold?
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- Model exhibits ‘exceedingly
narrow threshold region’

Note: Model is deterministic and does not
capture stochastic behaviors manifest in-vivo



Threshold

Space-clamped

120 -

- (mV)

o)
™m
-

1

-

V'm (t) _

—120 1

0 1 2 3 4
Time (ms)

Figure 4.42

(20
(@)

- Note lag for AP to occur (stems from capacitive build-up to threshold)



0o 1 2 3
Time (ms)

Figure 4.42

Note: This picture only
holds as a snapshot right
after the stimulus

4

Determine J,,,-V,, relationship right
after shock (dashed line)

» Current purely due to C,,
> Membrane “deciding” whether to fire AP or not
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» Ohm’ s Law: Negative resistance?
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- These pictures make it easy to envision
a stochastic component too




Threshold > assume n and & ol v,
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/ Vin=Vim _ o
0 15 110 (mV) - Ultimately more than one ion is needed
(Na* alone is insufficient)
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Threshold: Phase Plane Portrait

zoomed-in
assumes » and 4 are constant, but

m varies dynamically

V() = Vin(6)-V, (V)

m

Figure 4.49



Refractory Period
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Back to the question of spatial propagation...

Decremental conduction Decrement-free conduction

va 1 ‘/;712 va 3 VTm4 Vrm 1 ‘/;712 V;nB ‘/mél

EEERELINEE

n le q sz q VmB wvmdl

va 1

VmQ

me} ‘/m j
) L i

m

Figure 1.16



Propagated APs

e

@ ion
AN AAA

;

Space clamp
e

Wy
0z o

0

Step voltage clamp ()

oV, Vi,
5 0 Jinn.

L ]

Separation of
ionic currents Jion

" Dendritic
;. tree
Cell body '

Synapse
Jemm e -
' Normal
H direction
X of signal
P : flow
Myelinated :
axon
.J, .
1" :
11 ]
1" :

Axonal
tree

Nerve
terminal

Figure 1.22



Propagated APs
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Similar picture as before for

propagated AP
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V,and G,

- Note lag between

(stems from capacitive surge)
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- Note lag between V,, and G,

(stems from capacitive surge)
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