
York University BPHS 4080 (Winter 2020)

HW 2 SOLUTIONS

Questions

1. A solute n diffuses through a membrane that separates two compartments that have different initial
concentrations. The concentrations in the two compartments as a function of time, can(t) and cbn(t), are
shown in the figure below. The volumes of the two compartments are Va and Vb. Is Va > Vb or is
Va < Vb? Explain.

t

can (t)

cbn (t)

⇒ Solution (5 pts):

Since the concentration in compartment a changes less than that in compartment b, compart-
ment a has the larger volume. More formally, we have ca

n(0)− ca
n(∞) < cb

n(∞)− cb
n(0). But

ca
n(∞) = cb

n(∞) and cb
n(0) = 0. Combining these relations yields ca

n(0) < 2ca
n(∞). Let na

nbe the
number of moles of n in compartment a at time t = 0. Then,

na
n

Va
< 2

na
n

Va + Vb

from which it follows that Va + Vb < 2Va which implies that Vb < Va

2. All cells are surrounded by a cell membrane. The cytoplasm of most cells contains a variety of
organelles that are also enclosed within membranes. Assume that a spherical cell with radius R = 50µm
contains a spherical organelle called a vesicle, with radius r = 1µm, as shown in the following figure.

Assume that the membranes surrounding the cell and vesicle are uniform lipid bilayers with identical
compositions and the same thickness d = 10 nm. Assume that soluteX is transported across both the cell
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and vesicle membrane via the dissolve and diffuse mechanism. Assume that X dissolves equally well
in the bath and in the aqueous interiors of the vesicle and cell. Assume that the solute X dissolves 100
times less readily in the membrane (i.e. the partitioning coefficient is 0.01). Assume the diffusivity of X
in the membranes in 10−7cm2/s. Initially, the concentration of X is zero inside the cell and inside the
vesicle. At time t = 0, the cell is plunged into a bath that contains X with concentration 1 mmol/L.

⇒ Solution:
There are three interesting time constants. The first is the steady-state time constant for the mem-
brane (which is the same for both the vesicle and cell). It is given by

τss =
d2

π2D

where D is the diffusivity of the solute in the membrane and d is the thickness of the membrane.
Substituting,

τss =
(10 nm )2

π2 × 10−7cm2/sec
≈ 1µsec

The second is the equilibrium time constant for the cell,

τEQ|cell =
dVc

AkD

Where Vc is the volume of the cell and k is the partition coefficient (here we have ignored the effect
of the volume of the bath, because it is so large, and the volume of the vesicle, because it is so small).
Thus

τEQ|cell =
10 nm × 4

3πR3

4πR2 × 0.01× 10−7cm2/s
=

10 nm × R
3

0.01× 10−7cm2/s
=

10 nm × 50µm/3
0.01× 10−7cm2/s

≈ 1.7 s

The third is the equilibrium time constant for the vesicle,

τEQ|vesicle =
dVv

AkD

Where Vv is the volume of the vesicle (here we have ignored the effect of the volume of the cell
because it is so large). Thus

τEQ|vesicle =
10 nm × 4

3πr3

4πr2 × 0.01× 10−7cm2/s
=

10 nm × r
3

0.01× 10−7cm/s
=

10nm× 1µm/3

0.01× 10−7cm2/s
≈ 33 ms

a. Estimate the time that is required for the concentration ofX in the cell to reach 0.5 mmol/L. Find
a numerical value or explain why it is not possible to obtain a numerical value with the information
that is given.

⇒ Solution (5 pts):
Since τEQ|cell >> τss, the concentration cc(t) in the cell will increase nearly exponentially
with time with a time constant equal to τEQ|cell,
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cc(t) ≈ (1 mmol/L)× (1− e−t/τEQ|cell)

The concentration cc(t) will reach half its initial value when

(0.5mmol/L) = (1 mmol/L )× (1− e−t/τEQ|cell)

so

t = −ln(0.5τEQ|cell) = 0.69× 1.7 s ≈ 1.2 s

b. Estimate the time that is required for the concentration of X in the vesicle to reach 0.5 mmol/L.
Find a numerical value or explain why it is not possible to obtain a numerical value with the
information that is given.

⇒ Solution (5 pts):
Since τEQ|vesicle << τEQ|cell the concentration inside the vesicle is nearly equal to that in
the cell. Therefore, the anwser to part b is the same as the answer to part a

t ≈ 1.2 s

3. Two solutions of an uncharged solute S have volumes V1 = 100cm3 and V2 = 50cm3 and are
separated by a thin membrane (area A = 25cm2) permeant to S and impermeant to water.

area A = 25 cm2

V2 = 50 cm3V1 = 100 cm3

Solution 1 Solution 2

t

o (t)
S

o (t)
S

x

0.5 mol
m2s

2 s

The flux of S through the membrane obeys Fick’s law for membranes. At time t = 0, the concentration
of S in solution 1 is c1(0) = 100mol/m3. The initial concentration of S in solution 2 is not known. The
flux of S through the membrane in the positive x direction is found to be an exponential function of time
as shown in the plot.

a. Determine the concentration c1(t) of S in solution 1 and the concentration c2(t) of S in solution
2 as functions of time, assuming that the solutions are well-stirred. Sketch c1(t) and c2(t) on
suitably labeled axes.
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b. Determine numerical values for the final concentrations of S: c1(∞) and c2(∞). If it is not pos-
sible to determine numerical values, list the other information that would be needed to determine
a numerical value.

⇒ Solution (5 pts):
Since the flux φs(t) is out of compartment 1, the concentrationn ca(t) is given by

c1(t) = c1(0)−
A

V1

t∫
0

φs(t)dt

Substituting c1(0) = 100 mol/m3, A = 25 cm2, V1 = 100 cm3, and φs(t) = −0.5 et/2 mol/(m2s)
and integrating yields

c1(t) = 125− 25 e−t/2 mol/m3

Thus the final value of c1(t) is

c1(∞) = 125 mol/m3

Since the final value of φs(t) is zero, the final value of c2(t) must equal the final value of
c1(t)

c2(∞) = 125 mol/m3

Continuity of S implies that c1(t)V1 + c2(t)V2 equals a constant. We can evaluate the
constant at t→∞. The result is c1(t)V1 + c2(t)V2 = 125(V1 + V2). Solving for c2(t)
yields

c2(t) = 125 +
V1

V2
25 e−t/2 mol/m3 = 125 + 50 e−t/2 mol/m3

Time (s)

C
on

ce
nt

ra
tio

n
(m

ol
/m
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These concentrations are plotted above.

4



4. Dialysis is commonly used in hospitals to remove urea from a patient’s plasma when their kidneys
begin to fail. It is known that along with being found in the plasma, urea can also be found in the
interstitial brain fluid and the cerebrospinal fluid in the same concentration as the plasma.

If the solute transport by diffusion is given as Js = ωRT (C − C ′), where C denotes the concentration
of the solute in the blood, C ′ denotes the concentration in the dialysis fluid, ω denotes the Solute Perme-
ability (in mol · N−1 · s−1), R denotes the Gas Constant and T denotes the temperature of the system
(in Kelvins):

a. Determine the rate of change of the number of solute molecules N and the rate of change of the
concentration C of the solute in the blood (assuming that the surface area of the membrane can be
denoted as S)

⇒ Solution (2 pts):

If the surface area of the membrane can be denoted as S, then the rate of change of the
number of solute molecules N can be expressed as:

dN

dt
= −NavgrSωRT(C−C′)

If the solute is well mixed in the body fluid compartment, then N = CV , and this equation
can be denoted as:

dC

dt
=
−SωRT

V
(C−C′)

b. Determine the solution to the differential equation for the rate of change of the solute concen-
tration C; what is the time constant?

⇒ Solution (2 pts):

Using the above equation for the change in concentration as a function of time and putting it
into standard form, the following is received:

dC

dt
+

SωRTC

V
=

SωRTC′

V
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To solve this linear first-order equation, find the integrating factor from the standard form
such that:

I = e
∫

SωRT
V

dt = e
SωRT

V
t

By multiplying the standard form of the equation by the integrating factor, it can be seen that
the left-hand side of the resulting equation is automatically the derivative of the integrating
factor and y. Below, D denotes the arbitrary integrating factor, which can be solved by using
the steady state solution where C = C ′:

(
dC

dt
· e

SωRT
V

t) + (e
SωRT

V
t · SωRTC

V
) = (e

SωRT
V

t · SωRTC′

V
)

∴
d

dt
(Ce

SωRT
V

t) = AC′e
SωRT

V
t

Ce
SωRT

V
t =

∫
AC′e

SωRT
V

tdt

C(t) = C′ + De
−SωRT

V
t

∴ C(t) = C′ + (C0 −C′)e
−t
τ where τ =

V

SωRT

c. During dialysis conducted at room temperature, typical cellophane wrappers are used to intro-
duce the dialysis fluid. If 40 liters of dialysis solution is used, and the wrapper has an area of 3m2

and a solute permeability of 2.45 · 10−9mol ·N−1 · s−1, how long would the dialysis session run?

⇒ Solution (1 pt):

Assuming standard conditions for ambient temperature and pressure where temperature
equals 298.15 K:

∴ τ =
40 · 10−3 m3

(3 m2) · (2.45 · 10−9mol ·N−1 · s−1) · (8.314 · J
m K) · (298.15 K)

≈ 2195.47 s ≈ 36.59min

5. The following figure shows an experimental apparatus for testing a semipermeable membrane.
Volumes V1 and V2 contain well-stirred aqueous solutions of glucose and NaCl, respectively. These
volumes are separated by a membrane that is permeable only to water. Assume that the pistons are ideal
(i.e. they are frictionless, and faithfully transmit the pressure P1 and P2 to V1 and V2 respectively). Also
assume that effects of gravity are negligible.
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Glucose NaCl

p1 p2

V1 V2

a. When the system is in equilibrium, what will be the relation between the hydraulic pressure (P1

and P2 and solute concentrations in each compartment?

⇒ Solution (5 pts):

At osmotic equilibrium

p1 − p2 = π1 − π2 = RT(C1
Σ −C2

Σ) = RT(Cglucose −CNa+ −CCl−)

b. Volumes V1 and V2 are initially equal, with V1 = V2 = 1L. At time t = 0, the concentration of
glucose in compartment 1 is 0.01 mol/L and the concentration of NaCL in compartment 2 is 0.01
mol/L. If P1 = P2, what is the final volume of compartment 2? Sketch V2 as a function of time for
t ≥ 0.

⇒ Solution (5 pts):

The total volume of water is V1 + V2 = 2 L. Since p1 = p2, at osmotic equilibrium C1
Σ(∞) = C2

Σ(∞).
Initially, C1

Σ(0) = 0.01 mol/L and C2
Σ(0) = 0.02 mol/L. The number of moles of glucose is

0.01 mol and of Na+ plus Cl− is 0.02 mol. Therefore at osmotic equilibrium

0.01

V1
=

0.02

V2
and V1 + V2 = 2

These two equations are solved by taking the reciprocal of the equation on the left and sub-
stituting the equation on the right to obtain,

100V1 = 50V2 = 50(2−V1)

Solving these equations yields V1 = 2/3L and V2 = 4/3 L. The volume can be found as a
function of time from the relation

− 1

A

dV1(t)

dt
= LvRT(C2

Σ −C1
Σ)
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Note that V1(t) + V2(t) = 2L, N1
Σ = 0.01 mol and N2

Σ = 0.02 mol so that

dV1(t)

dt
=

1

τ

(
1

V1(t)
− 2

2−V1(t)

)
Where τ = 100/(LvRTA) and V2(t) = 2−V1(t). This differential equation can be in-
tegrated numerically to yield the solution shown in figure 1. The differential equation for
the volume is nonlinear and the solution shows monotonic, but non-exponential changes in
volume.

0 0.5 1 1.5

2/ 3

1

4/ 3

V1

V2

t/ τ

Figure 1: Change in volume with time. the volumes are expressed in liters

6. The water content of plants is very high (up to 90% by weight) but this water is in flux; water is
absorbed through the roots, rises as sap, and evaporates from the leaves. The total water content of a
plant can be replaced many times per hour. The mechanisms that determine water flow include: gravity,
osmosis, and capillarity. In this problem we will consider the effect of gravity and osmosis. Assume that
water flow is steady and is due to the gravitational, osmotic, and other forces. Let the pressure due to
gravity be pg; and the osmotic pressure be π. Let the pressure due to other sources in the trees be po
(e.g., capillary forces); assume these sources are not appreciable in the medium that is in contact with
the roots. Consider two trees:

1. The General Sherman giant sequoia (Sequoia gigantea) which is located in Sequoia National
Park in California stands 272 feet high and has a diameter of 36.5 feet at its base; you can drive
your car through a tunnel that has been cut through the base. The tree was estimated to be 3,800
years old.

2. The Red mangrove (Rhizophora mangle) grows in the tropics to a height of as much as 80 feet.
It is found in tidal creeks and estuaries and it can grow with its roots in seawater. Yet the sap has
the composition of fresh water.

The compositions of the relevant media are given below

Ion
Concentration mmol/L

Giant Sequoia Red Mangrove
soil sap seawater sap

K+ 1 20 10 20
Na+ 2 0 450 0
Cl− 30 2 530 2
NO−3 3 20 0 20
Ca2+ 7 1 10 1
Mg2+ 8 0 50 0
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a. Draw a figure for both the General Sherman and the Red mangrove; ensure to denote all forces
working in each system which aid/suppress the sap in rising within the trees, and to clearly state
all assumptions that have been made.

⇒ Solution (1 pt):
It can be assumed that the system denoted by both the General Sherman and the Red man-
grove can be characterized by a two-chamber system which relies on osmotic pressure (as
well as other outside pressure) as the driving force working against gravity and soil osmotic
pressure.

b. Find a numerical bound on po (expressed in atmospheres) such that the sap will rise in each tree.

⇒ Solution (4 pts):

At the junction between the roots and the soil/seawater, the flux of water from the soil/seawater
into the tree root is

Φv = Lv((p
s
g − πs)− (po + pt

g − πt))

Where the superscript t is used to denote the tree root and the superscript s to denote either
soil or seawater. Let pg = pt

g − ps
g. Therefore, for the sap to rise in the tree πt − πs − po − pg > 0

which implies that po < πt − πs − pg.

b. Which tree requires the larger value of po? Explain.

⇒ Solution (5 pts):

The pressure due to gravity is pg = ρgh where ρ is the density of water, g is the acceleration
of gravity, and h is the height of the tree. this can be expressed as follows

pg = (103 kg/ m3)(9.8 N/kg)h = 9.8× 103h Pa
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The osmotic pressure at 27◦C

π = RTCΣ = (8.314J/(mol K )(300 K )CΣ = 2.49× 103CΣ

Where CΣ is expressed in mol/m3. Note that concentration in mmol/L is the same as mol/m3.
The table below summarizes the relevant factors. There are a number of interesting factors
involved in the rising sap that are illustrated in this problem. To interpret the results intu-
itively, recall that atmospheric pressure (which results from the weight of the atmosphere
on the surface of the earth) corresponds to 105 pascals also called an atmosphere. Thus,
the gravitational pressure due to the height of the tree must be greater in the giant sequoia,
which is a taller tree than the red mangrove. Both pressures correspond to several atmo-
spheres. Both of these pressures tend to make the water flow out of the tree root into the
soil/seawater. Because, the osmolarity of the soil/seawater exceeds that of sap for both trees,
this difference in osmotic pressure also causes water to flow out of the tree. However, this
effect is much larger in the red mangrove than in the giant sequoia because the osmolarity of
seawater greatly exceeds that of the soil. Thus, the capillary forces that make sap rise must
be much greater in the red mangrove than in giant sequoia.

Variable Sequoia Mangrove
h(m) 82.9 24.4

pg (Pa) 8.1× 105 2.4× 105

Ct
Σ (mol/m3) 43 43

Cs
Σ (mol/m3) 51 1050
πt(Pa) 1.1× 105 1.1× 105

πt(Pa) 1.3× 105 2.6× 106

πt − πs − pg (Pa) −8.3× 105 −2.7× 106

po(Pa) < −8.3× 105 < −2.7× 106

7. The following figure shows the design of a miniature pump that can be implanted in the body to deliver
a drug. No batteries are required to run this pump!

Chamberp1 Chamberp2

Rigid,

Drug

Frict ionless,

3pcm

0.7pcm
(solute) (drug)

orifice

membrane
semipermeable

piston
impermeable

The pump contains two cylindrical chambers filled with incompressible fluids: the two chambers together
have a length of 3 cm and a diameter of 0.7 cm. Chamber 1 is filled with a solution whose concentration
is 10 mol/L; the osmolarity of this solution greatly exceeds that of body fluids. Chamber 2 is filled with
the drug solution. The two chambers are separated by a frictionless, massless, and impermeable piston.
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The piston moves freely and supports no difference in hydraulic chambers. The pump walls are rigid,
impermeable and cylindrical with an orifice at one end for delivering the drug and a rigid, semipermeable
membrane at the other end. The orifice diameter is sufficiently large that the hydraulic pressure drop
across this orifice is negligible and sufficiently small so that the diffusion of drug though the orifice is
also negligible. The semipermeable membrane is permeable to water only, and not permeable to the
solute. Assume the T = 300 K.

a. Provide a discussion of 50 words or fewer for each of the following:

i. What is the physical mechanism of drug delivery implied by the pump design?

⇒ Solution (5 pts):

Because the concentration of solute in Chamber 1 is much larger than the total solute
concentration in the body fluids, the osmotic pressure π = RTC1

Σ is larger than the
external osmotic pressure. Because of the properties of the piston and drug-delivery
orifice, no hydraulic pressure difference exists. Flux of water into Chamber 1, the piston
moves to the right and the drug solution is forced out of the orifice at the same volume
flow rate.

ii. What is (are) the source(s) of energy for pumping the drug?

⇒ Solution (5 pts):

Chemical energy is stored in the high solute concentration in Chamber 1. This store of
energy is dissipated as water flows in and dilutes the solution

iii. Assume there is an adequate supply of drug in the pump for the lifetime of the implanted
subject and this it is necessary to provide a constant rate of drug delivery. Which fundamental
factors limit the useful lifetime of this pump in the body?

⇒ Solution (5 pts):

If it is assumed that all the solute in Chamber 1 is in solution initially, then the con-
centration will decrease as water flows in. The concentration will not change much if
ΦvATL << V1, where TL is the time that the device is in operation. Thus, for a given
volume ΦVA, TL << V1/(ΦVA). Alternatively, if enough undissolved solute is in
Chamber1 to keep the solution saturated until all the drug is delivered, then the pump
could operate at a constant rate throughout its life.

b. When implanted in the body, the pump delivers the drug at a rate of 1 µL/h. Find the value of
hydraulic conductivity LV , of the semipermeable membrane.

⇒ Solution (5 pts):

The volume flux is LvRTC1
Σ and ΦvA = 1µL/h. Therefore,
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Lv =
ΦvA

RTC1
ΣA

=
1µL× 1/3600h/s

π × (0.007/2)2 m 2 × 8.314 Nm/(mol K)× 300 K × 10 mol/L × 103L/m3

= 2.9× 10−16m3/(Ns)

The principle of the osmotic pump is the basis of commercially available systems for drug
delivery.

8. This problem will require the use of SoftCell, software used in MATLAB. To access the remote version
of MATLAB provided by York University, go to computing.yorku.ca/students/computer-labs/connecting-
from-home-webfas/ and follow the instruction specific to your computer type. Next you need to down-
load from the course website the SoftCell software and unzip it into an accessible directory. Next launch
MATLAB using webfas and change the directory to the one containing SoftCell by clicking on the ellip-
sis next to current folder. In the command window now input ”softcell” which should launch the SoftCell
graphical user interface. We are interested in the random walk module.

a. Now that the random walk simulator has been launched, go ahead and run a simulation using
100 steps and 50 particles. The number of steps can be changed by via the ”Control” panel and the
number of particles can be changed by clicking on the parameters button in the ”Particle Set #1”
panel (you can ignore the columns regarding region 2 and 3, ensure the initial distribution is set to
pulsatile, the location at 200 and ensure that you click the update button to initialize your changes).
Start the simulation, and after its completion, click the ”Hist” button to observe both the expected
and actual distribution of the random walk. What shape does the expected distribution appear to
be? Does the actual distribution match the expected (make sure to run several simulations to get
a better sample size)? Click on the ”Graphs” button and view the graph for the mean particle
location. Describe and explain the expected mean.

⇒ Solution (5 pts):

The expected distribution should appear Gaussian. To first order the expected distribution
roughly matches the actual distribution.

The mean value for the expected location is a line with zero slope at 200. This is because the
random walk is unbiased, so you can expect equal number of particles to move left of the
central starting location as you would right.

b. Next bias the random walk so that one direction is preferred over another. This can be done
by varying the ”Right Step Prob” in the ”Parameters” window. Initially, what distribution do you
predict will arise? What distribution arises from the simulation? Can you think of any systems
where biased random walks are relevant? Make sure you include relevant information in answering
this question (ie particle number, number of steps, biasing probabilities)
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⇒ Solution (5 pts):

If the step size is chosen small enough, the Gaussian distribution will appear shifted in the
direction biased. If the step size is large, then the distribution will hit one of the boundaries
and roughly will appear as a half-Gaussian distribution. Many systems can mimic biased
random walk the most obvious being a charged particle in an electric potential.
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