
York University BPHS 4080 (Winter 2020) - HW 5 SOLUTIONS

Questions

1. Assume that an action potential is traveling at constant velocity, v, in the positive z-direction along an
axon. Assume that the core conductor model is valid so that

∂2Vm(z, t)

∂z2
= (ri + r0)Km(z, t)

The waveshape of the action potential at one point in space, z = z0 is shown in the figure below
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Figure 1: Waveforem of a propagated action potential

a) Sketch Km(z, t) on the same time scale as Vm(z0, t).

⇒ Solution (5 pts):

From the core conductor model (with no externally applied currents)

∂2Vm(z, t)

∂z2
= (ri + ro)Km(z, t)

For an action potential propagating in the ±z direction, Vm(z, t) = f(t ± z/ν) so that the
membrane potential must satisfy the wave equation.

∂2Vm(z, t)

∂z2
=

1

ν2

∂2Vm(z, t)

∂t2
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Figure 2: Membrane potential and its first two time derivatives plotted versus time. The time of
occurence of the maximum value of the action potential is tm, and the point of inflection at the onset of

the action potential is ti.

Therefore,

Km(z, t) =
1

(ri + ro) ν2

∂2Vm(z, t)

∂t2

The membrane potential and its first and second partial derivatives are shown in figure 3.

b) Prove that one cannot account for Km(z, t) by assuming that the membrane can be represented
by the equivalent circuit for an incremental element of length δz shown in the figure below. gm
and cm are constant conductances and capacitances per unit length. [HINT: Consider the polarity
of the current through the parallel combination of gm and cm prior to the time of occurence of the
peak of the action potential, tm.]
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Figure 3: Equivalent network for the membrane of an axon.
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⇒ Solution (5 pts):

For the linear model of the membrane, the membrane current per unit length is

Km = cm
∂Vm(z, t)

∂t
+ gm (Vm(z0, t)− V o

m)

For the time interval 0 < t < tm both ∂Vm(z0, t)/∂t and Vm(z0, t) − V o
m are positive quantities.

Therefore, the linear cable model predicts that Km > 0 in this interval. However, the core conduc-
tor model for a propagated action potential shows that Km is positive in the interval 0 < t < ti
but is negative in the interval ti < t < tm. Therefore, the linear resistance/capacitance model of a
membrane is not consistent with the membrane current during a propagated action potential.

2. A cylindrical fibre’s membrane has a certain radius r. The extracellular volume is outside the mem-
brane extending to a radius of twice this amount. It can be noted that the membrane itself is considered to
have negligible thickness relative to r. The membrane resistance at rest is 2 kΩ/cm2, the membrane ca-
pacitance is 1.2 µF / cm2, the intracellular resistivity is 100 Ω·cm, the extracellular resistivity is 40 Ω·cm
and the radius is 50 µm. Find each of the following values listed below along with their corresponding
units, and ensure to use the linear core-conductor model.

a) What is the membrane resistance per unit length?

⇒ Solution (5 pts):

Since it is assumed that the thickness of the cylindrical fibre is uniform, then the resistance
of a unit area (which is given) can be defined as:

R = R ·A = ρ · l

Therefore, to obtain the resistance of the sheet made of material whose specific resistance is
R, the specific resistance can be divided by the area of the sheet such that:

Rm =
R

2πr
=

2kΩ · cm2

2π(0.005cm)
= 63, 661.98 Ωcm ≈ 63.7 kΩcm

b) What is the membrane capacitance per unit length?

⇒ Solution (5 pts):

Since a similar idea as the one stated above can be applied to calculating the membrane
capacitance, the following holds true:

Cm = C · 2πr = 1.2
µF

cm2
· 2π(0.005cm) = 0.0377

µF

cm
≈ 3.77 · 10−6 F

m

c) What is the intracellular resistance per unit length?
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⇒ Solution (5 pts):

For the linear core-conductor model, the voltage difference across the volume element is
equal to the product of the current through the element and the resistance of the element
(∆Ri) such that:

Vi(z, t)− Vi(z + ∆z, t) = ∆RiIi(z + ∆z, t)

Therefore, by claiming ρi to be the resistivity of the inner conductor (cytoplasm), the resis-
tance of the element ∆Ri can be expressed as:

∆Ri =
ρi∆z

πr2

Thus, for the resistance per unit length, the following expression is obtained:

ri =
∆Ri
∆z

=
ρi
πr2

=
100Ω cm

π(0.005 cm)2
= 1, 273, 239.5

Ω

cm
≈ 127, 324

kΩ

m

d) What is the extracellular resistance per unit length?

⇒ Solution (5 pts):

The same principles for solving for the extracellular resistance per unit length can be used
as stated above; however, it must be noted that the difference in radii must be used in the
calculations such that:

ro =
∆Ri
∆z

=
ρo

π∆r2
=

40Ω cm

π(2r)2 − π(r)2
=

40Ω cm

4π(0.005cm)2 − (0.005cm)2
= 169, 765.3

Ω

cm
≈ 16, 976.5

kΩ

m

3. The following two experiments are performed on a squid giant axon:

• Experiment #1: The axon is placed in a large volume of sea water, and the size of the transmem-
brane action potential is measured by means of an intracellular micropipette and is found to have
a peak-to-peak value of 100 mV. The conduction velocity is 36 m/s.

• Experiment #2: The axon is placed in oil and the transmembrane potential is still found to 100 mV
peak-to-peak. The peak-to-peak size of the extracellular action potential is 75 mV.

Estimate the expected conduction velocity in Experiment # 2. State your assumptions.

⇒ Solution (5 pts):

The magnitudes of the extracellular and transmembrane potentials and the conduction velocity
depend upon the intracellular and extracellular resistance per unit length. Designate the extracel-
lular resistance per unit length as ro1 and ro2, for Experiments 1 and 2, respectively. Assume that
the intracellular resistance per unit length is the same for both experiments. The core conductor
model implies that

2πa (ro + ri) ν
2 = Km
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where Km is a property of the membrane and not of the dimesions of the cell. In Experiment 1 the
axon is in a large volume of sea water so that ro1 << ri. Therefore, the conduction velocity for
Experiment 1 implies that

2πa (ri) (36)2 = Km

From Experiment 2, the ratio of the external to the transmembrane potential is 75/100=3/4. Since

∆Vo = − ro
ri + ro

∆Vm

it follows that

ro2
ro2 + ri

=
3

4

Which can be solved to give ro2 = 3ri. The conduction velocity of the axon in Experiment 2 can be
found from the relation

2πa (ro2 + ri) ν
2
2 = Km

which can be written as

2πa(4ri)ν
2
2 = Km

Therefore, a combination of expressions for the conduction velocity in the two experiments yields
4ν2

2 = 362 or ν2 = 18 m/s.

4. A cylindrical cell has a diameter of 500 µm and a length equal to L = 4 cm. After brief experi-
mentation, it is discovered that the cell has the following cable parameters: A membrane conductance
gm = 100 µS

cm , a membrane capacitance cm = 150 nF
cm , and an internal resistance ri = 10 kΩ

cm such that
r0 � ri. Two experiments are later conducted:

Figure 4: Image denoting the two conducted experiments with the given
cylindrical cell with (top) a micropipette and with (bottom) an axial electrode

• Experiment #1: The cell is impaled, as seen in the top image in the following figure, with a
micropipette at its center so that the membrane potential could be measured

• Experiment #2: Axial electrodes are impaled, as seen in the bottom image in the following figure,
along the length of the cell to record the potential across the membrane - these electrodes have a
resistance per unit length r = 5 Ω

cm .
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a) Determine the cell space constant and the membrane time constant

⇒ Solution (5 pts):

Given the definition of the cell space constant, the following can be shown:

λC ≈
1

√
gm · ri

=
1√

10−4 · 104
= 1 cm

Therefore, given the cell space constant, the time constant of the cell can be calculated as:

τM =
cm
gm

=
150 · 10−9

10−4
= 1.5 ms

b) Given the set-up of the experiment 1 explained above, determine the measured potential across
the membrane at z = 0 (i.e determine νm(0, t))

⇒ Solution (5 pts):

The cell is 4 space space constants long. Hence, it is an electrically large cell. The step re-
sponse of an electrically large cell of infinite length is given in Equation 3.55 (Weiss, 1996b).
This relation gives an approximation to the step response of this cell. A more involved treat-
ment is required to get a more accurate answer for a cell that is 4 space constants long. The
approximate solution is as follows (where the t below is expressed in ms):

νm(0, t) ≈ λCri
2
· Ie · erf

( t

τM
· u(t)

)
= 5 · 103 · Ie · erf

( t

1.5
· u(t)

)
c) Given the set-up of the experiment 2 explained above, determine the measured potential across
the membrane at z = 0 (i.e determine νm(0, t))

⇒ Solution (5 pts):

It must be noted that the axial electrode has a resistance per unit length that is 2000 times
smaller than that of cytoplasm. Therefore, the space constant has increased by a factor of√

2000 ≈ 45, to about 45 cm. Therefore, the use of the axial electrodes has made this cell
an electrically small cell whose step response is given in Equation 3.54 (Weiss, 1996b) shown
below:

νm(0, t) = R · Ie(1− exp
[−t

τM

]
· u(t)

Therefore, given this result, the total resistance of the membrane of the cell, ignoring the
resistance of the two ends of the cylindrical cell, can be expressed as follows:

R =
1

gm · L
=

1

10−4 · 4
= 2.5 · 103 Ω

Plugging this result into the first given equation for νm(0, t), the following is received (where
the t below is again expressed in ms):

νm(0, t) = (2.5 · 103) · Ie(1− exp
[−t

1.5

]
· u(t)
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Finally, the two results can be compared to one another in the figure below, where the
unclamped cable response is a plot of νm(0, t)/(5 · 103 · Ie = erf(t/1.5) · u(t); for the
clamped cable response, the plot below is expressed mathematically as νm(0, t)/(5 ·103 · Ie =
(1− exp[−t/1.5]) · u(t).
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Figure 5: Image denoting the results of the unclamped/clamped experiments
with the given cylindrical cell

5. In fresh man physics, one learns that electrical circuits always form closed loops. Put another way, the
current has a return path such that the charge can ’flow’. Examine this figure from Weiss’ book. Does
this represent a ’circuit’? If so, sketch what the circuit looks like. If not, explain why.Quantitative Physiology: Cells and Tissues Lecture 19: October 20, 2003

(volume 2, chapter 1)
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⇒ Solution (5 pts):

The diagram does indeed, represent a closed circuit, shown equivalently in the diagram below.
In the diagram, both the voltage source and the current source are grounded to the extracellular
matrix. Ground is merely a reference point to measure potential differences and is conveniently
defined to be zero. It is also a matter of convenience as to where one might label ground, as voltage
measurements are only concerned about differences, not absolute values. As such, the intracellular
space could be defined as ground, however due to convention, electrical measurements of cells are
taken with respect to extracellular bath.

7



Figure 6: An equivalent circuit for problem 5. C is the membrane capacitance and R its resistance.
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