
Appendix B

Traveling Waves in the Mammalian

Cochlea - A Simple Model

We outline here a simple model for mechanics of the mammalian cochlea. The main

purpose is to show how simple considerations with regard to the anatomy and physics

lead to the presence of traveling waves, which can propagate energy throughout the

cochlea in a manner analogous to that of an electric transmission line.

B.0.9 Transmission Line

We briefly spend time here to discuss properties of an electric transmission line (TL),

which will be apparent when used for analogy later. As shown in Fig.B-1, a coaxial

transmission line can be formed by a long, straight wire surrounded by a conducting

sheath. An infitesimal element of length ∆z can be modeled by the circuit in Fig.B-2.

The space between the conductors will have a conductance G depending upon

what the medium is. Both wires effectively act as parallel-plate capacitors and will

have the resulting capacitance C between them. The resistance and inductance of

the wires (per unit length) will be given by R and L respectively. In the loss-less

condition, both G and R would identically be zero. Applying Kirchhoff’s laws, we
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have

v(z, t) − R · ∆z · i(z, t) − L · ∆z · ∂i(z, t)
∂t

− v(z + ∆z, t) = 0 (B.1)

and

i(z, t) −G · ∆z · v(z + ∆z, t) − C · ∆z · ∂v(z + ∆z, t)

∂t
− i(z + ∆z, t) = 0 (B.2)

Upon rearranging and taking the limit as ∆z → 0, we obtain the general TL equations

−∂v
∂z

= R · i(z, t) + L
∂i

∂t
(B.3)

− ∂i

∂z
= G · v(z, t) + C

∂v

∂t
(B.4)

Solutions to these equations will be of the form v(z, t) = <[V (z)ejωt] and i(z, t) =

<[I(z)ejωt]. Note that we use j to represent
√
−1 to avoid confusion. This leads to

∂2V

∂z2
= γ2V (z) (B.5)

and
∂2I

∂z2
= γ2I(z) (B.6)

where γ =
√

(R + jωL)(G+ jωC), the propagation constant. The (R+ iωL) term is

generally refered to as the series impedence Z while the (G+ iωC) term is the shunt

admittance Y . Generally R is neglected and we have

γ ≈ jω

√

√

√

√LC

[

1 +
G

jωC

]

(B.7)

A general solution to the equations will be the sum of a forward and backward trav-
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Figure B-1: Schematic showing a coaxial line, an inner conductor surrounded by an outer con-
ductor with a dielectric medium inbetween.

eling wave. For the voltage v(z, t), this will be given by

v(z, t) = ejωt[V +(z) + V −(z)] = ejωt[V +
o e

−γz + V −
o e

γz] (B.8)

which in turn solves the wave equation

∂2v

∂z2
− 1

µ2

∂2v

∂t2
= 0 (B.9)

where µ = ω/γ and describes the velocity of the traveling wave. It is insightful to

stop here a moment and examine the result. Our analysis has shown that as the

voltage changes across an infinitesimal cross-section of the coaxial line, this change

will propagate outward with speed and attenuation defined by γ (it is the real part

of γ which dictates how the wave amplitude changes). This derivation will provide

insight by analogy as we develop the first stage of our cochlear model.

One other useful quantity to describe here is the characteristic impedance of the

line, Zo. This is defined as the ratio between the voltage and the current. For an

infinitely long line with only a forward-traveling wave, we have

Zo =
V +

0

I+
o

≈
√

jωL

G+ jωC
(B.10)
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Figure B-2: Circuit diagram for infitesimal transmission line element [Johansson].

B.0.10 Passive Linear Model

Cochlear Geometry

One of the first assumption we make is to unravel the snail-shaped cochlea into a

straight tube. Previous calculations have shown that cochlear curvature can safely

be neglected when considering the macromechanics because the radius of curvature

is large compared to the spatial wavelength of the BM traveling waves [Steele and

Zais, 1984]. Fig.B-3 shows a cross-section through the basal turn of a guinea pig.

Separating the scala vestibuli (ScV) and scala media (DC) is a structure called Reiss-

ner’s membrane. This avascular barrier serves to seperate the ionic constituents of

the fluids on each side, but does not add any impedence and can thus be neglected.

One important observation to note is the location of the basilar membrane (BM). As

the bony projections juts out from the left (which encloses the nerves of the spiral

ganglion), the BM stretches only a short distance across (from beneath the IHCs

over to the right side wall). This is schematized in Fig.B-4, which shows the spe-

cific structures considered in our model. The wavelengths are large compared to the

scalae height and thus pressure can be considered uniform across the cross-section

(long wavelength approximation). It is important to note that the organ of cortii

sits on top of the basilar membrane and surely plays an active role in the dynamics.

We however here are going to focus solely on the macroscopic behavior and not the

specifics of what is happening at the microscopic level.
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Figure B-3: Micrograph showing anatomy of a cochlear turn. [ScV - scala vestibuli, ScT - scala
tympani, MT - tectorial membrane, IHC - inner hair cell, OHC - outer hair cell, DC - scala media]

Figure B-4: Coordinate system for cross-section.
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We will spend a moment here to describe the geometry of our problem such that

we can make as many simplifying assumptions as possible for clarity and still retain

the dynamical behavior as best we can. The distance x represents the distance along

the length of the straightened cochlea from the stapes. At each point x, we consider

the cross-section as shown in the right of Fig.B-4. We have chosen a rectangular shape

for the cochlear aqueduct and neglected the bony projection, assuming that the BM

simply stretches all the way across. This will be an adequate assumption since we are

chiefly concerned with how BM motion effects the change of each scalae area in the

cross-section. The cross-section has width b(x) and a height h(x) (with a reference

of 0 at the bony top of the scala vestibuli). The quantity d describes the position

of the BM. There are two points to be mentioned in regard to the figure. First, the

magnitude of d has been greatly exaggerated for clarity. The height of a cochlear

aqueduct in the guinea pig varies from 1.8 mm in the basal end to around 0.6 mm in

the apical end. However, BM amplitude ranges only from 0.05 nm at the lowest levels

up to 10-20 nm at the highest levels. We have also shown the lateral sides of the BM

fixed. This will introduce a constant factor in how the area changes which can be

safely neglected from our calculations below. One important initial assumption which

we will make is that b and h are independent of x and thus the cross-sectional area of

a volume element is constant (denoted by Av or At). For example, this simplifies the

expressions ∂
∂t

[Av(x) · uv(x, t)] to Av · ∂uv(x, t)/∂t where uv(x, t) is the fluid velocity

across the scala vestibuli. Since Av(x) = b(x) · d(x, t), this is equivalent to assuming
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(B.11)

We have already seen that ∂d/∂x will be quite small since the magnitude of the BM

motion is relatively small.

Model

We assume that the fluid is incompressible. It is also assumed that cochlear fluids

are not viscous, such that all energy entering the cochlea is dissipated by movement
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of the cochlear partition. The fluid dynamics are also assumed to be linear, since

the wavelengths are relatively large and the velocities small so we only need to worry

about inertial forces, [deBoer, 1996]. As the pressure difference across the element

[p(x + ∆x, t) − p(x, t)] is incremented, there will be a corresponding change in fluid

flow through the element given by

∆t · Av · [pv(x, t) − pv(x+ ∆x, t)] = ρ · ∆x · Av · [uv(x, t+ ∆t) − uv(x, t)] (B.12)

If we divide and take the limit, we obtain

∂pv

∂x
= −ρ∂uv

∂t
(B.13)

The negative term arises because as ∂p/∂x increases, the pressure will grow larger on

the right compared to the left and thus fluid is less likely to flow through. Because

of our chosen coordinate system, we simiarly find for the scala tympani

∂pt

∂x
= −ρ∂ut

∂t
(B.14)

Because the fluid is incompressible and the basilar membrane is flexible, we can

derive an expression for fluid velocity to membrane displacement [d(x, t)]. Again

considering a cross-sectional slice of thickness ∆x, the change of mass inside the

element will equal the product between the density and the change in volume

∆t · Av · ρ · [u(x, t) − u(x+ ∆x, t)] = ∆x · ρ · b · [d(x+ ∆x, t) − d(x, t)] (B.15)

Which upon dividing and taking the limit, we obtain

Av
∂uv

∂x
= −b∂d

∂t
(B.16)

A consequence of our chosen coordinate system means that increasing d means a
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smaller scala tympani cross-sectional area, so we have

At
∂ut

∂x
= b

∂d

∂t
(B.17)

We now turn towards the forces acting upon the cochlear partition. There are

three forces in addition to the inertial force which will have an effect:

F = Fstiffness + Fdrag + Fpressure = µ · ∆x · δ
2d

δt2
(B.18)

where µ∆x is the effective mass of section. The pressure force will be given by area ·

pressure difference = ∆x · b · [pv(x, t) − pt(x, t)]. This is positive since pv > pt means

that d will increase. The drag force is the product of the velocity and the effective

damping coefficient, α · ∆x. This force will be negative since it works opposite the

velocity when ∂d/∂t > 0. Finally, the force due to stiffness will be the product of the

displacement d and the effective stiffness κ ·∆x. Note that we assume that µ, α and

κ are all independent of x. This yields the following equation of motion

b · [pv(x, t) − pt(x, t)] = µ · δ
2d(x, t)

δt2
+ α · δd(x, t)

δt
+ κ · d(x, t) (B.19)

We now wish to show that Acs · (uv(x, t) + ut(x, t)) is constant with respect to

position and equal to zero (where Acs = Av + At). Consider the derivative

∂

∂x
Acs · [uv(x, t) + ut(x, t)] (B.20)

Which from our previous result, we can express this as

Acs ·
[

−b∂d
∂t

+ b
∂d

∂t

]

= 0 (B.21)

Thus uv(x, t)+ut(x, t) is constant at any place along the cochlea. At the base, any fluid

change at the oval window (i.e. at the stapes footplate) must be equal and opposite

in magnitude of the change at the round window. So we have uv(0, t) = −ut(0, t) for
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all t. This then leads to

uv(x, t) = −ut(x, t) (B.22)

This result can now be used to consider ∂/∂x[pv(x, t)+pt(x, t)], which will identically

be 0. So we obtain

pv(x, t) + pt(x, t) = α (B.23)

where α is a constant.

We can now make some simplifications by introducing the variables p ≡ pv−pt and

u ≡ Acs(uv−ut)/2. We assume that the time dependence of both p and u is sinusoidal

and each can be expressed as p(x, t) = <[P(x, ω)ejωt] and u(x, t) = <[U(x, ω)ejωt]

(ω is 2π times the frequency of stimulation). We can now write

∂p

∂x
=
∂pv

∂x
− ∂pt

∂x
= −ρ

(

∂uv

∂t
− ∂ut

∂t

)

(B.24)

which leads to
∂p

∂x
= − 2ρ

Acs

∂u

∂t
(B.25)

But since ∂p/∂x = ejωt∂P/∂x and ∂u/∂t = iωejωtU , we have

⇒ ∂P

∂x
= − 2ρ

Acs

iωU = −ZU (B.26)

We can carry out a similar analysis for u to obtain an expression for ∂U/∂x:

∂p

∂x
=
Acs

2

[

− b

Acs

(

∂d

∂t
+
∂d

∂t

)]

= −b∂d
∂t

(B.27)

Rearranging terms,
∂d

∂t
= −b∂u

∂x
= −e

jωt

b

∂U

∂x
(B.28)

We can now integrate this to get an expression for d(t).

d(t) =
∫

−e
jωt

b

∂U

∂x
dt = −e

jωt

jωb

∂U

∂x
(B.29)
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This result can then be plugged back into the equation of motion (eqn.B.19) as follows

bp(x, t) =
ejωt

jωb

∂U

∂x

[

−µ2 + αiω + κ
]

= b · Pejωt (B.30)

Upon rearranging terms, we can write this as

∂U

∂x
= − P

jω µ
b2 + α

b2 + 1

jω b2

κ

= −YP (B.31)

We can now use these results to develop a single expression for each P and U . We

first assume here that Z and Y have no x dependance. Plugging B.26 into B.31, we

obtain
∂2P

∂x2
+

1

`2
P = 0 (B.32)

where ` = j
√

1/ZY . This is just an expression for a traveling wave (the time depen-

dance has already been effectively accounted for and this is the basic wave equation).

So our result so far does allow for traveling waves (as we had hoped for). We get an

analogous equation for U . Since we assumed ` = `(ω) (and not `(x, ω)), we can easily

solve this to get p(x, t). Allowing for both forward and backward traveling waves, we

have

p(x, t) = P1e
i(x/`+ωt) + P2e

i(−x/`+ωt) (B.33)

since P (x, ω) = P1e
ix/` +P2e

−ix/`. The wavelength of the traveling wave will be given

by λ = 2π`. When λ is purely real, this wave will travel decrement-free. However,

imaginary parts of λ will cause a decay in the amplitude of the wave as it travels

along (due to Z and Y , whose real and imaginary parts will always be positive for

our system).

Comparison to Transmission Line Result

So we have developed a model based upon simple physical descriptions of our system

which allows for traveling waves to propagate along the BM. Time was spent initially

developing the dynamical equations for a transmission line and we see here that
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our two results are analogous. Consider equations (B.5) and (B.6) in comparison

to equations (B.26) and (B.31). Comparison of a simple case shows that these two

pairs of equations are equivalent to each other. In the loss-less TL case, both R and

G are identically 0. Thus γ is purely imaginary such that γ2 is real and negative.

Now consider the loss-less cochlea, where there is no damping or inertial terms (i.e.

µ, α = 0). So we must have

γ2 = − 1

`2
(B.34)

In comparing these two, we get

C · L =
b2

κ
· 2ρ

Acs
(B.35)

So the capacitive term in the transmission line is analogous to the restorative spring

term in the cochlea while the electrical inductance terms corresponds to a mass term.

It is also easy to see that the resistive term R carries over to the damping term α.

It is interesting that our method for determining a model of the cochlea pro-

duced something which so closely quantitatively parallels the treatment of an electri-

cal transmission line. A benefit gained is that results and insights into transmission

line dynamics (which have been quite thoroughly developed) can potentially be used

to provide insight back to the cochlear problem. For example, suppose we wanted

to add a single pressure source at some point xo along the cochlea (the reason will

become more apparent later on when we discuss amplification). We can think of this

being analogous to adding a single voltage source along the TL and being able to use

a similar set of quantitative tools to describe the resulting behavior.

WKB Approximation

Unfortunately, some of the made assumptions were not too good for what happens in

a real cochlea. For example, we know that BM stiffness and width changes along the

length of the cochlea. So both α and b are functions of x and thus λ is as well. Since

the wavelength changes along the cochlea, we will need to take a modified approach

to obtain an expression for p(x, t) [113].
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In 1926, three authors (Wentzel, Kramers and Brillouin) independently published

papers which approximated a wave function as an oscillatory wave depending upon

a phase integral. This allowed for obtaining approximated solutions to the time-

independent Schrodinger equation in one dimension [34]. If a particle with energy E

is moving in a field of constant potential V where E > V , the wave function is given

by

ψ(x) = Ae±jkx (B.36)

where k ≡
√

2m(E − V )/h̄. This is just a wave with constant amplitude A and

wavelength λ = 2π/k. Now what if V was not constant, but varied slowly in com-

parison to λ (so that over a region containing many wavelengths, V is approximately

constant)? The WKB approximation states that ψ will remain practically sinusoidal,

but that the wavelength and amplitude will vary slowly with x. If we write k as

k(x) ≡
√

2m[E − V (x)]/h̄, we get an approximate solution of the form [34]

ψ(x) ∼=
C

√

k(x)
e

j

h̄

∫

k(x)dx (B.37)

What is so useful about this result is that it can be applied to many other types

of problems, such as describing light in a medium where the index of refraction is

changing slowly or in our case, wave traveling along the cochlea.

If we assume that BM stiffness and scalae area changes rather gradually, then the

cochlea could act as a uniform transmission line locally. Considering only forward

traveling waves, our original solution had P (x, ω) in the form Poe
±ix/`. So we can try

a trial solution of the form

P (x, ω) = A(x)e−j
∫ x

0
dx′/`(x′,ω) (B.38)

which is analogous to going from (B.36) to (B.37) in the quantum problem. We can

substitute this back into the wave equation (B.32) to check its validity and determine

the function A(x). Since we assume that things vary gradually, we can assume that
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∂2A/∂x2 is negligible and we have

[

− 2j

`(x)

1

A(x)

dA

dx
− 1

`(x)2
+

j

`(x)2

d`

dx

]

+
1

`(x)2
= 0 (B.39)

This yields
1

`(x)

d`

dx
= 2

1

A(x)

dA

dx
(B.40)

This is easily solved and shows that the amplitude will be proportional to the

square root of the wavelength. Also note that propagation velocity is now going to

vary as well. We can now derive a specific expression for `(x, ω), expanding out Z

and Y . This yields

`(x, ω) = j

[

jωL+R + 1/jωC

jωM

]1/2

(B.41)

Now we introduce some new variables. Let ωr(x) ≡ 1/
√
LC , β(x, ω) ≡ ω/ωr(x),

δ ≡ ωr(x)RC and N ≡ (l/4)
√

M/L. Here, ωr(x) is just the local resonant frequency

of a given spot along the length of the BM. In a human ear, this ranges from about

20 kHz at x = 0 to 20 Hz at x = 35 mm in a logarithmic fashion. The variable

l is a constant which will be further described in the following section. With these

variables, we can rewrite the wavelength as

`(x, ω) =
l

4N

(1 − β2 + jδβ)1/2

β
(B.42)

So we are thus able to now write the wavelength as a function of `(ω/ωr(x)). The

pressure variation at a given spot xo depends upon the relationship between the

stimulation frequency ω and the local resonant frequency ωr(xo). We can now use

this expression for the wavelength to derive the BM transfer function.

Transfer Function

Making measurements of BM motion is difficult due to the cochlea being encased in

a bony structure. Removing the bone to expose the cochlear aqueduct runs the risk

of greatly degrading the viability of a living cochlea. However, careful measurements
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have been made and take the form of comparing BM motion at different points along

the cochlear length to that of the stapes. Thus we will develop an expression for the

complex transfer function, given by

T (x, ω) =
BM velocity

stapes velocity
(B.43)

We can now use the WKB approximation (B.38) and our expression for the wavelength

(B.42) to find T (x, ω). BM velocity is just given by ∂d/∂t, which we can use equations

(B.29), (B.31), (B.38) and (B.42) to obtain. Stapes velocity will be the scala vestibuli

volume velocity at x = 0 divided by the area of the stapes (which we assume to just

be Av). Expanding this out, we have

BM velocity =
ejωt

b
`2(x, ω)Y e−j

∫ x

0
dx′/`(x′,ω) (B.44)

We will get something similar for the stapes velocity, except that this will be evaluated

solely at x = 0 and thus no integral will appear in the denominator. Thus it becomes

apparent that we are going to need to solve for a specific expression of equation (B.38)

using (B.42). For convenience, we will assume that N and l are constant with respect

to x. We need to expand out our definition for ωr since this is a function of position.

Remember that this represents the local resonant frequency at a given point along the

BM. Experimental evidence has shown that the tonotopic organization of the cochlea

is logarithmic with higher frequencies at the basal end. Thus we can characterize this

by

ωr(x) = ωmaxe
−x/l (B.45)

where ωmax is the highest frequency which can be heard (at x = 0) and l is the distance

along the BM which this characteristic resonant frequency changes by a factor of e

(and is independent of x). Since we have β = ω/ωr, we have

dx = `
dβ

β
(B.46)
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Using this substitution, the integral to be evaluated can be written as

4N
∫ x

0

dβ

[1 − β2 + jδβ]1/2
(B.47)

This can be simplified even further by the substitution u(x, ω) = β(x, ω)−jδ/2. If we

assume that δ2 term is negligible (the validity of which is physiologically reasonable),

the expression reduces to

∫ x

0

du√
1 − u2

= sin−1 u(x) − sin−1 u(0) (B.48)

Putting everything together, we can write a closed expression for the transfer function,

given by [114]

T(x, ω) ≈ T0jβ(x, ω)

[

ωmax

ωr(x)

]

ej4N{sin−1[β(x,ω)−jδ/2]−sin−1[β(0,ω)−jδ/2]}

[1 − β2(x, ω) + jδβ(x, ω)]3/4
(B.49)

Here, T0 is a constant real coefficient. This equation now gives us a means to directly

test the model, as we will show in the following section.

B.0.11 Model Comparison to Experimental Data

In the 1930’s, Georg von Bekesy made important measurements in human cadaver

temporal bones that showed the existence of traveling waves along the BM (for his

extensive work in hearing, he was subsequently awarded the Nobel prize for Physiology

or Medicine in 1961). It was however not until 1971 when measurements made by Bill

Rhode in a living squirrel monkey using the Mossbauer technique showed strongly

non-linear behavior such as compressive growth [Rhode, 1971]. This indicates some

source of nonlinearity inside living ears (haven taken into account the nonlinear nature

of the Mossbauer technique). This data from Rhode was used as the basis for an

inverse model proposed by the physicist George Zweig that argues that the cochlear

impedance exhibits a region where the real part becomes negative (i.e. amplification)

[Zweig, 1991]. It is these results from Rhode which we will use to compare the model
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Figure B-5: Data obtained by Rhode from a single squirrel monkey. The transfer function T
here is shown as BM motion relative to the stapes. Imaging was done at one specific place while
frequency was swept. [Rhode, 1971]

to. Data from a single monkey is shown in Fig.B-5.

The transfer function of the model has the following free parameters which we

will have to adjust to get the best possible fit (as well as constrain to stay within

physiological bounds if the model is to work!): T0, N and δ. It appears that the

resonant frequency ωr (or center frequency, CF) at the place the measurements were

made is approximately 7.8 kHz. Using the mapping given by equation (B.45) where

ωmax/2π ≈ 50 kHz and l ≈ 5 mm for the squirrel monkey, we have x ∼= 9 mm.

Reasonable physiological values for N and T0 have an order of magnitude of 100 and

δ is around 10−1. Optimizing these values within that range, we obtain a fit to the

data as shown in Fig.B-6. The fit is quite reasonable considering the number of

simplifying assumption which were made. However, higher frequencies are not well

covered as the amplitude falls off much more quickly. Additionally, there is a dip in

the phase not seen in the actual data. We can also make a plot of the wavelength λ

(B.42). Figure B-7 has two parts: one at x = 9.25 mm and frequency varied (top) and

the other with frequency fixed at ω = 7.8 Hz. The real part of λ gives the physical

wavelength while the imaginary part give the inverse of the damping constant. Below

the CF, λ is purely real and the result is a traveling wave propagating unperturbed.
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Figure B-6: Fit to Rhode’s data using the transfer function given in equation (B.49). The model
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Figure B-7: A. The real and imaginary parts of the wavelength λ(x, ω). Here, x is held constant
at 9.25 mm. B Similar to above, but ω is held constant at the CF 2π · 7.8 kHz.
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Figure B-8: Fit to Rhode’s data extrapolated to lower sound levels ([114]). The fitting parameters
used are δ = 1/5000, T0 = 6, N = 6 and x = 9.4 mm.

However, as you come closer to the CF, the imaginary part starts to increase from

zero, causing the wave to damp out. Above the CF, λ is purely imaginary and there

is only damping and no wave propagation.

Presumably, cochlear amplification is most prevalent at low sound intensities. At

higher levels, this amplifier is effectively turned down (or washed out), thereby causing

compressive (i.e. nonlinear) growth observed in a number of different measurements.

Rhode’s data presented in Fig.B-5 were likely taken at higher intensities (70-90 dB

SPL). The data has subsequently been extrapolated to lower levels near threshold

[Zweig, 1991], which we can further use to test our model. This fit to the new data

is shown in Fig.B-8.

The fit is decent, though we had to push δ beyond the physiological range. Since

this term relates to damping combined with the model’s peak being much smaller

at CF, this implies that there is some active mechanism which is adding energy into

the system. It should also be noted that the peak in the model is much narrower

than the experimental data. This may stem from the fact that when using the WKB

approximation, we assume that the wavelength and amplitude vary slowly compared

to x. This is probably not true in the region around the CF where amplification is

likely to occur.
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B.0.12 Conclusions

While we have seen that this simple model model works reasonably well in comparison

to experimental data, the model is insufficient to capture all the features observed in

the ear. Most notably (albeit not shown here), the model is entirely linear, which we

know the ear not to be. And while the model can account for responses in a dead

ear, it does not exhibit the features seen in a living, healthy ear (such as sharp tuning

and large phase delays).

A logical next step in the model would be to include features which would ac-

count for active amplification mechanisms that have been proposed to exist in the

ear. These could take the form of pressure sources distributed along the length of the

cochlea. This effectively could describe feedback mechanisms which could arise from

possible generators such as OHC motility or stereociliary bundle/transduction chan-

nel dynamics. A good starting point would be to model these with delta functions

and work out the transfer function with these additional terms to see if the model

predictions better match the data. A further step would be to try to model these ac-

tive elements more as physiological entities rather than lumped elements. This would

allow for the model to make better predictions about what the possible amplification

mechanisms are and the significance of their roles.

Differences between data and model aside, this simple view has given us con-

siderable insight into the function of the inner ear. In responses to sound pressure

(propagated through the external and middle ears to the cochlea), traveling waves are

set up that propagate energy thru the cochlea to its characteristic place (analogous

to an electric transmission line). This conclusion stems from a few simple physical

laws as well as basic knowledge about mammalian cochlear anatomy (i.e. a flexible

membrane with graded mass/stiffness, etc.). It is interesting to ask whether this sim-

ple physical description is valid in the non-mammalian ear, where inner ear anatomy

differs greatly.

One final point to emphasize here: the model described here, while fairly sim-

ple, borrowed from a number of different flavors of science such as electro-dynamics,
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quantum mechanics and physiology. It is in this regard that the study of hearing (or

most of biology for that matter) is truly a multi-disciplinary science, making it so

engaging and challenging.
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