
— Albert Einstein, "The Happiest Thought of My Life"; see A. Pais, Inward Bound,
New York, Oxford Univ. Press, 1986

Accelerated Coordinate Systems
and Inertial Forces

In describing the motion of a particle, it is frequently convenient, and sometimes neces-
sary, to employ a coordinate system that is not inertial. For example, a coordinate system
fixed to the Earth is the most convenient one to describe the motion of a projectile, even
though the Earth is accelerating and rotating.

We shall first consider the case of a coordinate system that undergoes pure transla-
tion. In Figure 5.1.1 Oxyz are the primary coordinate axes (assumed fixed), and O'x'y'z'
are the moving axes. In the case of pure translation, the respective axes Ox and O'x', and
soon, remain parallel. The position vector of a particle P is denoted by r in the fixed system
and by r' in the moving system. The displacement 00' of the moving origin is denoted
by Thus, from the triangle OO'P, we have

r=R0+r' (5.1.1)

Taking the first and second time derivatives gives

v=V0+v' (5.1.2)
a=A0+a (5.1.3)
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"I was sitting in a chair at the patent office in Bern, when all of a sudden a
thought occurred to me: If a person falls freely, he will not feel his own weight.
I was stat-tied. This simple thought made a deep impression on me. It impelled
me toward a theory of gravitation."
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Figure 5.1.1 Relationship between the
position vectors for two coordinate systems
undergoing pure translation relative to each
other.

in which V0 and A0 are, respectively, the velocity and acceleration of the moving
system, and v' and a' are the velocity and acceleration of the particle in the moving
system.

In particular, if the moving system is not accelerating, so that A0 =0, then

a = a'

so the acceleration is the same in either system. Consequently, if the primary system is
inertial, Newton's second law F = ma becomes F = ma' in the moving system; that is, the
moving system is also an inertial system (provided it is not rotating). Thus, as far as
Newtonian mechanics is concerned, we cannot a unique coordinate system; if
Newton's laws hold in one system, they are also valid in any other system moving with uni-
form velocity relative to the first.

On the other hand if the moving system is accelerating, then Newton's second law
becomes

F = mA0 +ma' (5.1.4a)

or

F—mA0 =ma' (5.L4b)

for the equation of motion in the accelerating system. If we wish, we can write
Equation 5.1.4b in the form

F' = ma' (5.1.5)

in which F' = F + (—mA0). That is, an acceleration A0 of the reference system can be taken
into account by adding an inertial term —mA0 to the force F and equating the result to
the product of mass and acceleration in the moving system. Inertial terms in the equations
of motion are sometimes called inertial forces, or fictitious forces. Such "forces" are not
due to interactions with other bodies, rather, they stem from the acceleration of the ref-
erence system. Whether or not one wishes to call them forces is purely a matter of taste.
In any case, inertial terms are present if a noninertial coordinate system is used to describe
the motion of a particle.

x

x
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EXAMPLE 5.1 1

A block of wood rests on a rough horizontal table. If the table is accelerated in a hori-
zontal direction, under what conditions will the block slip?

Solution:
Let be the coefficient of stalic friction between the block and the table top. Then the
force of friction F has a maximum value of where m is the mass of the block. The
condition for slipping is that the inertial force —mA0 exceeds the frictional force, where
A0 is the acceleration of the table. Hence, the condition for slipping is

or

A0

EXAMPLE 5.1.2
A pendulum is suspended from the ceiling of a railroad car, as shown in Figure 5.1 .2a.
Assume that the car is accelerating uniformly toward the right (+x direction). A non-
inertial observer, the boy inside the car, sees the pendulum hanging at an angle left
of vertical. He believes it hangs this way because of the existence of an inertial force
which acts on all objects in his accelerated frame of reference (Figure 5.1.2b). An iner-
tial observer, the girl outside the car, sees the same thing. She knows, however, that there
is no real force acting on the pendulum. She knows that it hangs this way because a
net force in the horizontal direction is required to accelerate it at the rate A0 that she
observes (Figure 5.1.2c). Calculate the acceleration A0 of the car from the inertial
observer's point of view. Show that, according to the noninertial observer, = —mA0
is the force that causes the pendulum to hang at the angle 8.

Solution:
The inertial observer writes down Newton's second law for the hanging pendulum
as

Tsin9=mA0 TcosO—mg=O
:.A0=gtan9

She concludes that the suspended pendulum hangs at the angle 8 because the railroad
car is accelerating in the horizontal direction and a horizontal force is needed to make
it accelerate. This force is the x-component of the tension in the string. The accelera-
tion of the car is proportional to the tangent of the angle of deflection. The pendulum,
thus, serves as a linear accelerometer.
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Noninertial
observer

*
(b)

A0 Inertial observer (c)

(a)

Figure 5.1.2 (a) Pendulum suspended in an accelerating railroad car as seen by (b) the
noninertial observer and (c) the inertial observer.

On the other hand the noninertial observer, unaware of the outside world (assume
the railroad track is perfectly smooth—no vibration—and that the railroad car has no
windows or other sensory clues for another reference point), observes that the pendu-
lum just hangs there, tilted to the left of vertical. He concludes that

ma' = 0

Tcos8—mg=O
tanG

All the forces acting on the pendulum are in balance, and the pendulum hangs left of
vertical due to the force (=—mA0). In fact if this observer were to do some more exper-
iments in the railroad car, such as drop balls or stones or whatever, he would see that
they would also be deflected to the left of vertical. He would soon discover that the
amount of the deflection would be independent of their mass. In other words he would
conclude that there was a force, quite like a gravitational one (to be discussed in
Chapter 6), pushing things to the left of the car with an acceleration A0 as well as the
force pulling them down with an acceleration g.

Inertial observer

mg
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EXAMPLE 5.1.3
Two astronauts are standing in a spaceship accelerating upward with an acceleration A0
as shown in Figure 5.1.3. Let the magnitude of A0 equal g. Astronaut #1 throws a ball
directly toward astronaut #2, who is 10 m away on the other side of the ship. What must
be the initial speed of the ball if it is to reach astronaut #2 before striking the floor?
Assume astronaut #1 releases the ball at a height h = 2 m above the floor of the ship.
Solve the problem from the perspective of both (a) a noninertial observer (inside the
ship) and (b) an inertial observer (outside the ship).

Solution:
(a) The noninertial observer believes that a force —mA0 acts upon all objects in the ship.

Thus, in the noninertial (x', y') frame of reference, we conclude that the trajectory
of the ball is a parabola, that is,

x'(t) = y'(t) = — A0t2

y'(x') =

Setting y'(x') equal to zero when x' = 10 m and solving for yields

=

= )1I2

m) = 15.6 ms1

(b) The inertial observer sees the picture a little differently. It appears to him that
the ball travels at constant velocity in a straight line after it is released and that the
floor of the spaceship accelerates upward to intercept the ball. A plot of the verti-
cal position of the ball and the floor of the spaceship is shown schematically in
Figure 5.1.4. Both the ball and the rocket have the same initial upward speed at
the moment the ball is released by astronaut #1.

y

Figure 5.1.3 Two astronauts throwing a
ball in a spaceship accelerating at
I A0 I = I g I.



Figure 5.1.4 Vertical position of (1) a
ball thrown in an accelerating rocket and
(2) the floor of the rocket as seen by an
inertial observer.
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Yo =

xor t=—

:: :
2Yo

±0

The vertical positions of the ball and the floor coincide at a time t that depends on the
initial height of the ball

During this time t, the ball has traveled a horizontal distance x, where

x = ±0t

Inserting this time into the relation for Yo above yields the required initial horizon-
tal speed of the ball

Thus, each observer calculates the same value for the initial horizontal velocity, as well
they should.

The analysis seems less complex from the perspective of the noninertial observer. In
fact the noninertial observer would physically experience the inertial force —mA0. It
would seem every bit as real as the gravitational force we experience here on Earth. Our
astronaut might even invent the concept of gravity to "explain" the dynamics of moving
objects observed in the spaceship.

5.21 Rotating Coordinate Systems
In the previous section, we showed how velocities, accelerations, and forces transform
between an inertial frame of reference and a noninertial one that is accelerating at a con-
stant rate. In this section and the following one, we show how these quantities transform
between an inertial frame and a noninertial one that is rotating as well.
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We start our discussion with the case of a primed coordinate system rotating with
respect to an unprimed, fixed, inertial one. The axes of the coordinate systems have a
common origin (see Figure 5.2.1). At any given instant the rotation of the primed system
takes place about some specific axis of rotation, whose direction is designated by a unit
vector, n. The instantaneous angular speed of the rotation is designated by Co. The prod-
uct, Con, is the angular velocity of the rotating system

(0= Con (5.2.1)

The sense direction of the angular velocity vector is given by the right-hand rule (see
Figure 5.2.1), as in the definition of the cross product.

The position of any point P in space can be designated by the vector r in the fixed,
unprimed system arid by the vector r' in the rotating, primed system (see Figure 5.2.2).

Figure 5.2.1 The angular velocity vector
of a rotating coordinate system.

Figure 5.2.2 Rotating coordinate system
(primed system).

y

Axis of
rotation

x

P
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Because the coordinate axes of the two systems have the same origin, these vectors are
equal, that is,

r=ix+jy+kz=r'=i'r'+j'y'+k'z' (5.2.2)

When we differentiate with respect to time to find the velocity, we must keep in mind
the fact that the unit vectors i', j', and k' in the rotating system are not constant, whereas
the primary unit vectors i, j, and k are. Thus, we can write

•dr .dy dz .,dx' •,dy' ,dz' ,di' ,dj' ,dk'i—+j—+k—=i —+j —+k —+x (5.2.3)
dt dt dt dt dt dt dt dt dt

The three terms on the left-hand side of the preceding equation clearly give the velocity
vector v in the fIxed system, and the first three terms on the right are the components of
the velocity in the rotating system, which we shall call v', so the equation may be written

,di' ,dj' dk'v=v+r—+y—+z— (5.2.4)
dt cit cit

The last three terms on the right represent the velocity due to rotation of the primed coor-
dinate system. We must now determine how the time derivatives of the basis vectors are
related to the rotation.

To find the time derivatives di'/dt, dj'/dt, and dk'Idt, consider Figure 5.2.3. Here is
shown the change Al' in the unit vector i' due to a small rotation AG about the axis of
rotation. (The vectors j' and k' are omitted for clarity.) From the figure we see that the
magnitude of Al' is given by the approximate relation

Ai'I (Ii'I sinØ)AG = (sinØ)AG

where 0 is the angle between I' and to. Let At be the time interval for this change. Then
we can write

di' . Al' . dO=hrn = = (smØ)w (5.2.5)

Figure 5.2.3 Change in the unit vector i'
produced by a small rotation AU.

Al'
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Now the direction of Ai' is perpendicular to both w and i'; consequently, from the defi-
nition of the cross product, we can write Equation 5.2.5 in vector form

(5.2.6)
dt

Similarly, we find dj'/dt = w x j', and dk'/dt = w X k'.
We now apply the preceding result to the last three terms in Equation 5.2.4 as follows:

x' + y' + z' = x'(w X i') + y'(wX j') + z'(w X k')

= w X (i'x' + j'y' + k'z') (5.2.7)

= w X r'

This is the velocity of P due to rotation of the primed coordinate system. Accordingly,
Equation 5.2.4 can be shortened to read

v=v'+wXr' (5.2.8)

or, more explicitly

1

= + w X r
=

+ w X Jr (5.2.9)t fixed rot rot

that is, the operation of differentiating the position vector with respect to time in the
fixed system is equivalent to the operation of taking the time derivative in the rotating
system plus the operation w x. A little reflection shows that the same applies to any
vector Q, that is,

=
+ w)( Q (5.2.lOa)dtmt

In particular, if that vector is the velocity, then we have

= + w X v (5.2.lOb)
dt )fzxed dt )rot

But v = v' + w X r', so

(d'\ ,
-5-I =1—i-I (v +wXr)+wX(v +wXr)

kat)rot
rd(wxr')l

dt ]
+wXv+wX(wXr) (5.2.11)

rot rot

(dr'=1—1+1—I Xr'+WXI—
dt dt )rot dt rot

+wX v'+wX(wX r')



Figure 5.2.4 Geometry for the general
case of translation and rotation of the
moving coordinate system (primed
system).
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P

Now concerning the term involving the time derivative of w, we have =
+ w )( w. But the cross product of any vector with itself vanishes, so (dw/dt) =

(dW/dt)rot = w. Because v' = (dr'/dt)rot and a' = (dv'/dt)rot, we can express the final result
as follows:

a = a' + 0-i X r' +2w X v' + to X (w X r') (5.2.12)

giving the acceleration in the fixed system in terms of the position, velocity, and acceler-
ation in the rotating system.

In the general case in which the primed system is undergoing both translation and
rotation (Figure 5.2.4), we must add the velocity of translation V0 to the right-hand side
of Equation 5.2.8 and the acceleration A0 of the moving system to the right-hand side of
Equation 5.2.12. This gives the general equations for transforming from a fixed system
to a moving and rotating system:

V = v' + to X r' + V0
a=a'+wXr'+2wXv'+wX(wxr')+A0

(5.2.13)

(5.2.14)

The term 2w )( v' is known as the Coriolis acceleration, and the term to )( (to )( r') is
called the centripetal acceleration. The Coriolis acceleration appears whenever a
particle moves in a rotating coordinate system (except when the velocity v' is parallel to
the axis of rotation), and the centripetal acceleration is the result of the particle being
carried around a circular path in the rotating system. The centripetal acceleration is
always directed toward the axis of rotation and is perpendicular to the axis as shown in
Figure 5.2.5. The term w X r' is called the transverse acceleration, because it is per-
pendicular to the position vector r'. It appears as a result of any angular acceleration of
the rotating system, that is, if the angular velocity vector is changing in either magnitude
or direction, or both.

y



Figure 5.2.5 Illustrating the centripetal
acceleration.

EXAMPLE 5.2.1
A wheel of radius b rolls along the ground with constant forward speed V0. Find the accel-
eration, relative to the ground, of any point on the rim.

Solution:
Let us choose a coordinate system fixed to the rotating wheel, and let the moving origin
be at the center with the x'-axis passing through the point in question, as shown in
Figure 5.2.6. Then we have

r'=i'b a'=r'=O v'=r'=O
The angular velocity vector is given by

= = k'

Figure 5.2.6 Rotating coordinates fixed to a rolling
wheel.
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Axis of rotation

r'

V0
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for the choice of coordinates shown; therefore, all terms in the expression for acceler-
ation vanish except the centripetal term:

a = w X X r') = k'ax (k'a x i'b)
V2= k' x (k' Xi')

= k' Xj'

= iQ(_j')

Thus, a is of magnitude V02/b and is always directed toward the center of the rolling
wheel.

EXAMPLE 5.2.2
A bicycle travels with constant speed around a track of radius p. What is the accelera-
tion of the highest point on one of its wheels? Let V0 denote the speed of the bicycle
and b the radius of the wheel.

Solution:
We choose a coordinate system with origin at the center of the wheel and with the
x'-axis horizontal pointing toward the center of curvature C of the track. Rather than
have the moving coordinate system rotate with the wheel, we choose a system in which
the z'-axis remains vertical as shown in Figure 5.2.7. Thus, the O'x'y'z' system rotates

Figure 5.2.7 Wheel rolling on a
curved track The z'-axis remains vertical
as the wheel turns,

P

V0

x

C p
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with angular velocity to, which can be expressed as

p
and the acceleration of the moving origin A0 is given by

v2A0 =
p

Because each point on the wheel is moving in a circle of radius b with respect to the
moving origin, the acceleration in the O'x'y'z' system of any point on the wheel is
directed toward 0' and has magnitude V02/b. Thus, in the moving system we have

=

for the point at the top of the wheel. Also, the velocity of this point in the moving system
is given by

v' = —j'V0

so the Coriolis acceleration is

v22wxv'=21 -fl-k'
) P

Because the angular velocity w is constant, the transverse acceleration is zero. The cen-
tripetal acceleration is also zero because

x(k'xbk)=O
p

Thus, the net acceleration, relative to the ground, of the highest point on the wheel is

v2 v2a =3 i' — k'
p b

Dynamics of a Particle in a Rotating
Coordinate System

The fundamental equation of motion of a particle in an inertial frame of reference is

F=ma (5.3.1)

where F is the vector sum of all real, physical forces acting on the particle. In view of
Equation 5.2.14, we can write the equation of motion in a noninertial frame of reference as

F — mA0 — 2mw X v' — mw X r' — nuo)( (o)( r') = ma' (5.3.2)

All the terms from Equation 5.2.14, except a', have been multiplied by m and transposed
to show them as inertial forces added to the real, physical forces F. The a' term has been



5.3 Dynamics of a Particle in a Rotating Coordinate System 197

multipliedby m also, but kept on the right-hand side. Thus, Equation 5.3.2 represents the
dynamical equation of motion of a particle in a noninertial frame of reference subjected
to both real, physical forces as well as those inertial forces that appear as a result of the
acceleration of the noninertial frame of reference. The inertial forces have names corre-
sponding to their respective accelerations, discussed in Section 5.2. The Coriolis force is

= —2mw X v' (5.3.3)

The transverse force is

= —mth X r' (5.3.4)

The centrifugal force is

= —mw X (w X r') (5.3.5)

The remaining inertial force —mA0 appears whenever the (x', y', z') coordinate system is
undergoing a translational acceleration, as discussed in Section 5.1.

A noninertial observer in an accelerated frame of reference who denotes the accel-
eration of a particle by the vector a' is forced to include any or all of these inertial forces
along with the real forces to calculate the correct motion of the particle. In other words,
such an observer writes the fundamental equation of motion as

F' = ma'
in which the sum of the vector forces F' acting on the particle is given by

F' = + + + — mA0

We have emphasized the real, physical nature of the force term F in Equation 5.3.2 by
appending the subscript physical to it here. F (or forces are the only forces that
a noninertial observer claims are actually acting upon the particle. The inclusion of the
remaining four inertial terms depends critically on the exact status of the noninertial
frame of reference being used to describe the motion of the particle. They arise because
of the inertial property of the matter whose motion is under investigation, rather than from
the presence or action of any surrounding matter.

The Coriolis force is particularly interesting. It is present only if a particle is moving
in a rotating coordinate system. Its direction is always perpendicular to the velocity vector
of the particle in the moving system. The Coriolis force thus seems to deflect a moving
particle at right angles to its direction of motion. (The Coriolis force has been rather fan-
cifully called "the merry-go-round force." Try walking radially inward or outward on a
moving merry-go-round to experience its effect.) This force is important in computing
the trajectory of a projectile. Coriolis effects are responsible for the circulation of air
around high- or low-pressure systems on Earth's surface. In the case of a high-pressure
area,1 as air spills down from the high, it flows outward and away, deflecting toward the
right as it moves into the surrounding low, setting up a clockwise circulation pattern. In
the Southern Hemisphere the reverse is true.

'A high-pressure system is essentially a bump in Earth's atmosphere where more air is stacked up above some
region on Earth's surface than it is for surrounding regions.
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yI

Figure 5.3.1 Inertial forces acting on a mass
m moving radially outward on a platform
rotating with angular velocity to and angular
acceleration to <0. The xy-axes are fixed. The
direction of to is out of the paper.

The transverse force is present only if there is an angular acceleration (or decelera-
tion) of the rotating coordinate system. This force is always perpendicnlar to the radius
vector r' in the rotating coordinate system.

The centrifugal force is the familiar one that arises from rotation about an axis. It
is directed outward away from the axis of rotation and is perpendicular to that axis. These
three inertial forces are illustrated in Figure 5.3.1 for the case of a mass m moving radi-
ally outward on a rotating platform, whose rate of rotation is decreasing (w <0). The
z-axis is the axis of rotation, directed out of the paper. That is also the direction of the
angular velocity vector to. Because r', the radius vector denoting the position of m in
the rotating system, is perpendicular to to, the magnitude of the centrifugal force is
mr'w2. In general if the angle between to and r' is 6, then the magnitude of the
tripetal force is sin 6 where r' sin 6 is the shortest distance from the mass to the
axis of rotation.

EXAMPLE 5.3.1
A bug crawls outward with a constant speed v' along the spoke of a wheel that is rotat-
ing with constant pngular velocity to about a vertical axis. all the apparent forces
acting on the bug (see Figure 5.3.2).

Solution:
First, let us choose a coordinate system fixed on the wheel, and let the x'-axis point along
the spoke in question. Then we have

F, = i'x' = i'v'
F' = 0

for the velocity and acceleration of the bug as described in the rotating system. If we
choose the z'-axis to be vertical, then

to = k'to
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Figure 5.3.2 Forces on an insect crawling outward
along a radial line on a rotating wheel.

Centrifugal
force

The various forces are then given by the following:

—2mo X r' = —2mwv'(k' X i') = —2mwv'j'
X r' =0 (w = constant)

—moj X (w X r') = X (k' X i'x')]
= —ma2(k' X j'x')
= mw2x'i'

Thus, Equation 5.3.2 reads

Coriolis force
transverse force
cent rtfu gal force

F — 2m0,v'j' + =0
Here F is the real force exerted on the bug by the spoke. The forces are shown in
Figure 5.3.2.

In Example 5.3.1, find how far the bug can crawl before it starts to slip, given the coef-
ficient of static friction between the bug and the spoke.

Solution:
Because the force of friction F has a maximum value of slipping starts when

or

On solving for x', we find

IF I =

+ =

— [p2g2

for the distance the bug can crawl before slipping.
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EXAMPLE 5.3.3
A smooth rod of length 1 rotates in a plane with a constant angular velocity o about an
axis fixed at the end of the rod and perpendicular to the plane of rotation. A bead of mass
mis initially positioned at the stationary end of the rod and given a slight push such that
its initial speed directed down the rod is e = wl (see Figure 5.3.3). Calculate how long
it takes for the bead to reach the other end of the rod.

Solution:
The best way to solve this problem is to examine it from the perspective of an (x', y') frame
of reference rotating with the rod. If we let the x'-axis lie along the rod, then the prob-
lem is one-dimensional along that direction. The only real force acting on the bead is F,
the reaction force that the rod exerts on the bead. It points perpendicular to the rod,
along the y'-direction as shown in Figure 5.3.3. F has no x'-component because there
is no friction. Thus, applying Equation 5.3.2 to the bead in this rotating frame, we obtain

Fj' — 2mok' x — mok' x (ojk' x x'i') =
Fj — 2mwx'j' + mw2x'i' = mI'i'

The first inertial force in the preceding equation is the Coriolis force. It appears in the
expression because of the bead's velocity ±' i' along the x'-axis in the rotating frame. Note
that it balances out the reaction force F that the rod exerts on the bead. The second iner-
tial force is the centrifugal force, ma2x'. From the bead's perspective, this force shoves
it down the rod. These ideas are embodied in the two scalar equivalents of the above
vector equation

F = 2mw±' mw2x' =

Solving the second equation above yields x'(t), the position of the bead along the rod as
a function of time

x'(t) = +
= wAe(0t —

Figure 5.3.3 Bead sliding along a smooth
rod rotating at constant angular velocity i
about an axis fixed at one end.

y
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The boundary conditions, x'(t =0) =0 and (t =0) = €, allow us to determine the con-
stants A and B

x'(O)=O=A+B

A = -B =
2w

which lead to the explicit solution

x'(t) = _!_(e(0t _e_0)t)
2w

= sinh ot
Ct)

The bead flies off the end of the rod at time T, where

x'(T) = sinh oT =1
Ct)

=
0)

Because the initial speed of the bead is wi, the preceding equation becomes

T = -k-- sinh'(l) = 0.88

Effects of Earth's Rotation
Let us apply the theory developed in the foregoing sections to a coordinate system that
is moving with the Earth. Because the angular speed of Earth's rotation is radians per
day, or about 7.27 x radians per second, we might expect the effects of such rotation
to be relatively small. Nevertheless, it is the spin of the Earth that produces the equato-
rial bulge; the equatorial radius is some 13 miles greater than the polar radius.

Static Effects: The Plumb Line
Let us consider the case of a plumb bob that is normally used to define the direction of
the local "vertical" on the surface of the Earth. We discover that the plumb bob hangs
perpendicular to the local surface (discounting bumps and surface irregularities). Because
of the Earth's rotation, however, it does not point toward the center of the Earth unless
it is suspended somewhere along the equator or just above one of the poles. Let us
describe the motion of the plumb bob in a local frame of reference whose origin is at the
position of the bob. Our frame of reference is attached to the surface of the Earth. It is
undergoing translation as well as rotation. The translation of the frame takes place along
a circle whose radius is p = cos where re is the radius of the Earth and is the geo-
centric latitude of the plumb bob (see Figure 5.4.1).
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Figure 5.4.1 Gravitational force mg0,
inertial force —mA0, and tension T acting
on a plumb bob hanging just above the
surface of the Earth at latitude A.

Its rate of rotation is w, the same as that of the Earth about its axis. Let us now exam-
ine the terms that make up Equation 5.3.2. The acceleration of the bob a' is zero; the bob
is at rest in the local frame of reference. The centrifugal force on the bob relative to our
local frame is zero because r' is zero; the origin of the local coordinate system is centered
on the bob. The transverse force is zero because th =0; the rotation of the Earth is con-
stant. The Coriolis force is zero because v', the velocity of the plumb bob, is zero; the
plumb bob is at rest in the local frame. The only surviving terms in Equation 5.3.2 are
the real forces F and the inertial term —mA0, which arises because the local frame of ref-
erence is accelerating. Thus,

F—mA0=0 (5.4.1)

The rotation of the Earth causes the acceleration of the local frame. In fact, the sit-
uation under investigation here is entirely analogous to that of Example 5.1.2—the
linear accelerometer. There, the pendulum bob did not hang vertically because it expe-
rienced an inertial force directed opposite to the acceleration of the railroad car. The
case here is almost completely identical. The bob does not hang on a line pointing toward
the center of the Earth because the inertial force —mA0 throws it outward, away from
Earth's axis of rotation. This force, like the one of Example 5.1.2, is also directed oppo-
site to the acceleration of the local frame of reference. It arises from the centripetal accel-
eration of the local frame toward Earth's axis. The magnitude of this force is cos
It is a maximum when =0 at the Earth's equator and a minimum at either pole when

= ±900. It is instructive to compare the value of the acceleration portion of this term,
A0 = co2r0 cos to g, the acceleration due to gravity. At the equator, it is 3.4 x 103g or
less than 1% of g.

F is the vector sum of all real, physical forces acting on the plumb bob. All forces,
including the inertial force —mA0, are shown in the vector diagram of Figure 5.4.2a. The
tension T in the string balances out the real gravitational force mg0 and the inertial force
—mA0. In other words

(T + mgo) — mA0 =0 (5.4.2)

Now, when we hang a plumb bob, we normally think that the tension T balances out the
local force of gravity, which we call mg. We can see from Equation 5.4.2 and Figure 5.4.2b

-mA0



Figure 5.4.2 (a) Forces acting on a plumb
bob at latitude (b) Forces defining the
weight of the plumb bob, mg.
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(b)

E

SinE sin2.
mg

w2r (D2r
Sin E E = cos sin = sin 2A

g 2g
(5.4.4b)

Thus, vanishes at the equator =0) and the poles = ±900) as we have already sur-
mised. The maximum deviation of the direction of the plumb line from the center of the
Earth occurs at = 450 where

(02r=—
2g

(5.4.4c)

T

-mA0

mg0

mg

-mA0

(a)

that mg is actually the vector sum of the real gravitational force mg0 and the inertial
force —mA0. Thus,

mg0—mg—mA0=0 .. g=g0—A0 (5.4.3)

As can be seen from Figure 5.4.2b, the local acceleration g due to gravity contains a term
A0 due to the rotation of the Earth. The force mg0 is the true force of gravity and is
directed toward the center of the Earth. The inertial reaction —mA0, directed away from
Earth's axis, causes the direction of the plumb line to deviate by a small angle away from
the direction toward Earth's center. The plumb line direction defines the local direction
of the vector g. The shape of the Earth is also defined by the direction of g. Hence, the
plumb line is always perpendicular to Earth's surface, which is not shaped like a true
sphere but is flattened at the poles and bulged outward at the equator as depicted in
Figure 5.4.1.

We can easily calculate the value of the angle €. It is a function of the geocentric lat-
itude of the plumb bob. Applying the law of sines to Figure 5.4.2b, we have

(5.4.4a)

or, because E is small
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In this analysis, we have assumed that the real gravitational force mg0 is constant and
directed toward the center of the Earth. This is not valid, because the Earth is not a true
sphere. Its cross section is approximately elliptical as we indicated in Figure 5.4.1; there-
fore, g0 varies with latitude. Moreover, local mineral deposits, mountains, and so on,
affect the value of g0. Clearly, calculating the shape of the Earth (essentially, the angle
as a function of A) is difficult. A more accurate solution can only be obtained numerically.
The corrections to the preceding analysis are small.

Dynamic Effects: Motion of a Projectile
The equation of motion for a projectile near the Earth's surface (Equation 5.3.2) can be
written

= F+mg0 —mA0 —2mwX r'—mwX(wX r') (5.4.5)

where F represents any applied forces other than gravity. From the static case consid-
ered above, however, the combination mg0 — mA0 is called mg; hence, we can write the
equation of motion as

miS' = F + mg — 2mw X r' — mw X (w X r') (5.4.6)

Let us consider the motion of a projectile. If we ignore air resistance, then F = 0.
Furthermore, the term —mw x (w X r') is very small compared with the other terms,
so we can ignore it. The equation of motion then reduces to

=mg—2mwX r' (5.4.7)

in which the last term is the Coriolis force.
To solve the preceding equation we choose the directions of the coordinate axes

O'x'y'z' such that the z'-axis is vertical (in the direction of the plumb line), the x'-axis is
to the east, and the y'-axis points north (Figure 5.4.3). With this choice of axes, we have

g=—k'g (5.4.8)

The components of w in the primed system are

0 =wcosA =wsinA (5.4.9)

The cross product is, therefore, given by

i' j' k'
wXr'= (0, CO.. CO.x z (5.4.10)

±'

= cos A — sin A) + j'(wx' sin A) + k'(—w±' cos A)

Using the results for w X r' in Equation 5.4.10 and canceling the rn's and equating com-
ponents, we find

= cosA — sinA) (5.4.lla)
= —2w(±' sin A) (5.4.llb)
= —g+2w±'cosA (5.4.llc)



Figure 5.4.3 Coordinate axes for
analyzing projectile motion.
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for the component differential equations of motion. These equations are not of the sep-
arated type, but we can integrate once with respect to t to obtain

= —2w(z' cos — y' sin +
= —2a,x' sin +

(5.4. 12a)

(5.4. 12b)
(5.4. 12c)

The constants of integration and are the initial components of the velocity. The
values of and from Equations 5.4.12b and c may be substituted into Equation 5.4.lla.
The result is

= 2wgt cos — cos — sin

where terms involving have been ignored. We now integrate again to get

= wgt2

and finally, by a third integration, we find x' as a function oft:

x'(t)=

(5.4.13)

(5.4.14)

(5.4. 15a)

The preceding expression forx' may be inserted into Equations 5.4.12b and c. The result-
ing equations, when integrated, yield

y'(t) = — + (5.4. 15b)
(5.4.15c)

where, again, terms of order w2 have been ignored.
In Equations 5.4.15a—c, the terms involving w express the effect of Earth's rotation

on the motion of a projectile in a coordinate system fixed to the Earth.
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EXAMPLE 5.4.1

Falling Body
Suppose a body is dropped from rest at a height h above the ground. Then at time
t = Owe have = = 0, and we set = = = h for the initial position.
Equations 5.4.15a—c then reduce to

cosA.

y'(t) = 0

z'(t)= +h
Thus, as it falls, the body drifts to the east. When it hits the ground (z' = 0), we see
that t2 = 2h/g, and the eastward drift is given by the corresponding value of x'(t),
namely,

"
cosA

For a height of, say, 100 m at a latitude of 45°, the drift is

(7.27 x s )(8 x m319.8 m . )1J2 cos 45° = 1.55 x 10_2 m = 1.55 cm

Because Earth turns to the east, common sense would seem to say that the body should
drift westward. Can the reader think of an explanation?

EXAMPLE 5.4.2

Deflection of a Rifle Bullet
Consider a projectile that is fired with high initial speed v0 in a nearly horizontal three-
tion, and suppose this direction is east. Then = v0 and = = 0. If we take the
origin to be the point from which the projectile is fired, then = = = 0 at time
t =0. Equation 5.4.15b then gives

y'(t) = —av0t2 sinA

which says that the projectile veers to the south or to the right in the Northern
Hemisphere 0) and to the left in the Southern Hemisphere < 0). If H is the hor-
izontal range of the projectile, then we know that H v0t1, where t1 is the time of flight.
The transverse deflection is then found by setting t = t1 = H/v0 in the above expression
for y'(t). The result is

aH2 sin
V0

for the magnitude of the deflection. This is the same for any direction in which the pro-
jectile is initially aimed, provided the trajectory is flat. This follows from the fact that
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the magnitude of the horizontal component of the Coriolis force on a body traveling
parallel to the ground is independent of the direction of motion. (See Problem 5.12.)
Because the deflection is proportional to the square of the horizontal range, it becomes
of considerable importance in long-range gunnery.

*55 Motion of a Projectile in a Rotating Cylinder
Here is one final example concerning the dynamics of projectiles in rotating frames of
reference. The example is rather involved and makes use of applied numerical techniques.
We hope its inclusion gives you a better appreciation for the connection between the
geometry of straight-line, force-free trajectories seen in an inertial frame of reference
and the resulting curved geometry seen in a noninertial rotating frame of reference.
The inertial forces that appear in a noninertial frame lead to a curved trajectory that may
be calculated from the perspective of an inertial frame solely on the basis of geometrical
considerations. This must be the case if the validity of Newton's laws of motion is to be
preserved in noninertial frames of reference. Such a realization, although completely
obvious with hindsight, should not be trivialized. It was ultimately just this sort of real-
ization that led Einstein to formulate his general theory of relativity.

EXAMPLE 5.5.1
In several popular science fiction novels2 spacecraft capable of supporting entire pop-
ulations have been envisioned as large, rotating toroids or cylinders. Consider a cylin-
der of radius R = 1000 km and, for our purposes here, infinite length. Let it rotate about
its axis with an angular velocity of co = 0.18°/s. It completes one revolution every 2000 s.
This rotation rate leads to an apparent centrifugal acceleration for objects on the inte-
rior surface of o)R equal to 1 g. Imagine several warring factions living on the interior
of the cylinder. Let them fire projectiles at each other.

(a) Show that when projectiles are fired at low speeds (v cc coR) and low "altitudes"
at nearby points (say, Ar'   R/10), the equations of motion governing the result-
ing trajectories are identical to those of a similarly limited projectile on the sur-
face of the Earth.

(b) Find the general equations of motion for a projectile of unlimited speed and range
using cylindrical coordinates rotating with the cylinder.

(c) Find the trajectory h versus 0' of a projectile fired vertically upward with a velocity
= oil in this noninertial frame of reference. h = R — r' is the altitude of the pro-

jectile and 0' is its angular position in azimuth relative to the launch point. Calculate
the angle CD where it lands relative to the launch point. Also, calculate the maximum
height H reached by the projectile.

2For example, Rendezvous with Rama and Rama II by Arthur C. Clarke (Bantam Books) or Titan by John Varley
(Berkeley Books).
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Figure 5.5.1 Coordinates denoted by unit
vectors i', j', k' on the interior surface of a
rotating cylinder. Unit vectors e,, eq,,
denote cylindrical coordinates. Each set is
embedded in and rotates with the cylinder.

-— (0
V

p

Solution:

—A0—2w )( v'—w X (w X r')=a'

A0 = a2Rk'

The second term is the Coriolis acceleration and is given by

= 2w x v' = 2(—j'w) X (i'x' + +
= 2ox'k' —

The third term is the centrifugal acceleration given by

= —j'O) X [(—j'o)) X r']

= j'w X X (i'x' + j'y' + k'z')]
= j'w X (—k'a)x' + i'O)z')

= —i'a2x' — k'w2z'

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

(d) Finally, calculate h versus 0' solely from the geometrical basis that an inertial observer
would employ to predict what the noninertial observer would see. Show that this
result agrees with that of part (c), calculated from the perspective of the noniner-
tial observer. In particular, show that D and H agree.

(a) Because we first consider short, low-lying trajectories, we choose Cartesian coor-
dinates (x', y', z') denoted by the unit vectors i', j', k' attached to and rotating with
the cylinder shown in Figure 5.5.1.

The coordinate system is centered on the launch point. Because no real force
is acting on the projectile after it is launched, the mass m common to all remaining
terms in Equation 5.3.2 can be stripped and the equation then written in terms of
accelerations only

The transverse acceleration is zero because the cylinder rotates at a constant rate.
The first term on the left is the acceleration of the coordinate system origin. It is
given by
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After gathering all appropriate terms, the x'-, y'-, and z'-components of the result-
ant acceleration become

1' = +

y'=O (5.5.5)
= —2a±' + w2z' — O)2R

If projectiles are limited in both speed and range such that

Ix'I—Iz'I<<R (5.5.6)

and recalling that the rotation rate of the cylinder has been adjusted to 0JR = g. the
above acceleration components reduce to

(5.5.7)

which are equivalent to the equations of motion for a projectile of limited speed and
range on the surface of the Earth.

(b) In this case no limit is placed on projectile velocity or range. We describe the motion
using cylindrical coordinates (r', z') attached to and rotating with the cylinder as
indicated in Figure 5.5.1. r' denotes the radial position of the projectile measured from
the central axis of the cylinder; 0' denotes its azimuthal position and is measured from
the radius vector directed outward to the launch point; z' represents its position along
the cylinder (z' = 0 corresponds to the z'-position of the launch point). The overall
position, velocity, and acceleration of the projectile in cylindrical coordinates are
given by Equations 1.12.1—1.12.3. We can use these relations to evaluate all the accel-
eration terms in Equation 5.5.1. The term A0 is zero, because the rotating coordi-
nate system is centered on the axis of rotation. The Coriolis acceleration is

2w X v' = )( + +

= X + )( (5.5.8)

= —

The centrifugal acceleration is

X X r') = X X +

= )( (5.5.9)
= _O)2r'er'

We can now rewrite Equation 5.5.1 in terms of components by gathering together all
the previous corresponding elements and equating them to those in Equation 1.12.3

P — = +
+ = —2o? (5.5.10)

= 0

In what follows we ignore the z'-equation of motion because it contains no nonzero
acceleration terms and simply gives rise to a "drift" along the axis of the cylinder
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of any trajectory seen in the r'Ø' plane. Finally, we rewrite the radial and azimuthal
equations in such a way that we can more readily see the dependency of the accel-
eration upon velocities and positions

(5.5.lla)

= (5.5.llb)

(c) Before solving these equations of motion for a projectile fired vertically upward
(from the viewpoint of a cylinder dweller), we investigate the situation from the
point of view of an inertial observer located outside the rotating cylinder. The rota-
tional speed of the cylinder is oR. If the projectile is fired vertically upward with
a speed wR from the point of view of the noninertial observer, the inertial observer
sees the projectile launched with a speed v = oR at 45° with respect to the ver-
heal. Furthermore, according to this observer, no real forces act on the projectile.
Travel appears to be in a straight line. Its flight path is a chord of a quadrant. This
situation is depicted in Figure 5.5.2.

As can be seen in Figure 5.5.2, by the time the projectile reaches a point in its
trajectory denoted by the vector r', the cylinder has rotated such that the launch point
a has moved to the position labeled b. Therefore, the inertial observer concludes
that the noninertial observer thinks that the projectile has moved through the angle
0' and attained an altitude of R — r'. When the projectile lands, the noninertial
observer finds that the projectile has moved through a total angle of 'I) = ir/2 — off,
where Tis the total time of flight. But T=LJv = 1 radian.
Hence, the apparent deflection angle should be <I) = ir/2 — 1 radians, or about 32.7°.
The maximum height reached by the projectile occurs midway through its trajectory
when ot + 0' = ir/4 radians. At this point r' = or H = R — R/'.Ji = 290 km.
At least, this is what the inertial observer believes the noninertial observer would
see. Let us see what the noninertial observer does see according to Newton's laws
of motion.

y

Figure 5.5.2 Trajectory of a projectile
launched inside a rotating cylinder at 450
with respect to the "vertical" from the x
point of view of an inertial observer.
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We have used Mathematica to solve the differential equations of motion
(Equation 5.5.lla and b) numerically as in Example 4.3.2 and the result is shown
in Figure 5.5.3.

It can be seen that the projectile is indeed launched vertically upward according
to the rotating observer. But the existence of the centrifugal and Coriolis inertial
forces causes the projectile to accelerate back toward the surface and toward the east,
in the direction of the angular rotation of the cylinder. Note that the rotating observer
concludes that the vertically launched projectile has been pushed sideways by the
Coriolis force such that it lands 32.7° to the east of the launch point. The centrifugal
force has limited its altitude to a maximum value of 290 km. Each value is in com-
plete agreement with the conclusion of the noninertial observer. Clearly, an intel-
ligent military, aware of the dynamical equations of motion governing projectile
trajectories on this cylindrical world, could launch all their missiles vertically upward
and hit any point around the cylinder by merely adjusting launch velocities. (Positions
located up or down the cylindrical axis could be hit by tilting the launcher in that
direction and firing the projectile at the required initial and thereafter constant
axial velocity

(d) The inertial observer calculates the trajectory seen by the rotating observer in the
following way: first, look at Figure 5.5.4. It is a blow-up of the geometry illustrated
in Figure 5.5.2.

Figure 5.5.3 Trajectory of a
projectile fired vertically upward
(toward the central axis) from the
interior surface of a large cylinder
rotating with an angular velocity to,
such that w2R = g.

R

Figure 5.5.4 Geometry used to calculate the
trajectory seen by a rotating observer according to an
inertial observer.

10 15 20
0' (degrees) —0.-
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0 is the azimuthal angle of the projectile as measured in the fixed, inertial frame.
The azimuthal angle in the noninertial frame is 0'= — o.t (see Figure 5.5.2). As can
be seen from the geometry of Figure 5.5.4, we can calculate the functional depend-
ency of 0 upon time

— L(t) sin 45° — L(t)tanØ(t)—
R—L(t) cos45° — VIR—L(t)

— —
(5.5.12)

- - 1-o)t
The projectile appears to be deflected toward the east by the angle 0' as a function
of time given by

= 0(t) — ot = tan_1(1
J —

ot (5.5.13)

The dependency of r' on time is given by

r'2(t)= [L(t) sin 450]2 + [R — L(t) cos45°]2
= L(t)2 +R2
= 2(oRt)2 +R2 — (5.5.14)
= R2 [1— 2at(1 — 0t)]

r'(t) = R [1— 2ot(1 —

These final two parametric equations r'(t) and Ø'(t) describe a trajectory that the iner-
tial observer predicts the noninertial observer should see. If we let time evolve
and then plot h = R — versus 0', we obtain exactly the same trajectory shown in
Figure 5.5.3. That trajectory was calculated by the noninertial observer who used
Newton's dynamical equations of motion in the rotating frame of reference. Thus,
we see the equivalence between the curved geometry of straight lines seen from the
perspective of an accelerated frame of reference and the existence of inertial forces
that produce that geometry in the accelerated frame.

The Foucault Pendulum
In this section we study the effect of Earth's rotation on the motion of a pendulum that
is free to swing in any direction, the so-called spherical pendulum. As shown in Figure 5.6.1,
the applied force acting on the pendulum bob is the vector sum of the weight mg and the
tension S in the cord. The differential equation of motion is then

(5.6.1)

Here we ignored the term —mw X (w X r'). It is vanishingly small in this context. Previously,
we worked out the components of the cross product w x r' (see Equation 5.4.10).
Now the x'- and y'-components of the tension can be found simply by noting that the



Figure 5.6.1 The Foucault pendulum.
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direction cosines of the vector S are —x'/l, —y'/l, and —(1— z')/l, respectively. Consequently
= —x'S/l, = —y'S/l, and the corresponding components of the differential equation

of motion (5.6.1) are

sinA

(5.6.2a)

(5.6.2b)

We are interested in the case in which the amplitude of oscillation of the pendulum is small
so that the magnitude of the tension S is very nearly constant and equal to mg. Also, we
shall ignore compared with !Yin Equation 5.6.2a. The x'y' motion is then governed by
the following differential equations:

=

= —-f. y' —

(5.6.3a)

(5.6.3b)

in which we have introduced the quantity w' = co sin A = which is the local vertical
component of Earth's angular velocity.

Again we are confronted with a set of differential equations of motion that are not in
separated form. A heuristic method of solving the equations is to transform to a new coor-
dinate system Oxyz that rotates relative to the primed system in such a way as to cancel
the vertical component of Earth's rotation, namely, with angular rate —ol about the ver-
tical axis as shown in Figure 5.4.3. Thus, the unprimed system has no rotation about the
vertical axis. The equations of transformation are

x' = x cosO)'t + y sinO)'t
y' = —x sino)'t + y cosw't

(5.6.4a)
(5.6.4b)

On substituting the expressions for the primed quantities and their derivatives from the
preceding equations into Equations 5.6.3a and b, the following result is obtained, after

z, z'

I

0
y

mg
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collecting terms and dropping terms involving oY2,

+fxjcosw't+[g +f yjsinw't = 0 (5.6.5)

and an identical equation, except that the sine and cosine are reversed. Clearly, the preceding
equation is satisfied if the coefficients of the sine and cosine terms both vanish, namely,

i+fx=O (5.6.6a)

(5.6.6b)

These are the differential equations of the two-dimensional harmonic oscillator discussed
previously in Section 4.4. Thus, the path, projected on the ry plane, is an ellipse withftred
orientation in the unprimed system. In the primed system the path is an ellipse that
undergoes a steady precession with angular speed oY = w sin a.

In addition to this type of precession, there is another natural precession of the
spherical pendulum, which is ordinarily much larger than the rotational precession under
discussion. However, if the pendulum is carefully started by drawing it aside with a thread
and letting it start from rest by burning the thread, the natural precession is rendered neg-
ligibly small.3

The rotational precession is clockwise in the Northern Hemisphere and counter-
clockwise in the Southern. The period is 2,r/co' = 2ir/(co sin = 24/sin a h. Thus, at a lat-
itude of 45°, the period is (24/0.707) h = 33.94 h. The result was first demonstrated by
the French physicist Jean Foucault in Paris in the year 1851. The Foucault pendulum has
come to be a traditional display in major planetariums throughout the world.

Problems
5.1 A 120-lb person stands on a bathroom spring scale while riding in an elevator. If the eleva-

tor has (a) upward and (b) downward acceleration of g/4, what is the weight indicated on the
scale in each case?

5.2 An ultracentrifuge has a rotational speed of 500 rps. (a) Find the centrifugal force on a i-jig
particle in the sample chamber if the particle is 5 cm from the rotational axis. (b) Express
the result as the ratio of the centrifugal force to the weight of the particle.

5.3 A plumb line is held steady while being carried along in a moving train. If the mass of the plumb
bob is m, find the tension in the cord and the deflection from the local vertical if the train is
accelerating forward with constant acceleration g/1O. (Ignore any effects of Earth's rotation.)

5.4 If, in Problem 5.3, the plumb line is not held steady but oscillates as a simple pendulum, find
the period of oscillation for small amplitude.

5.5 A hauling truck is traveling on a level road. The driver suddenly applies the brakes, causing
the truck to decelerate by an amount W2. This causes a box in the rear of the truck to slide
forward. If the coefficient of sliding friction between the box and the truckbed is find the
acceleration of the box relative to (a) the truck and (b) the road.

3The natural precession will be discussed briefly in Chapter 10.


