power.of gravity, but have not yet asmgned the cause of this power . | have
not been able to discover the cause of those properties of gravity from
phenomena, and | frame no hypotheses;—

~-Sir Isaac Newton, The Principia, 1687; Florian Cajori‘s translation, Berkeley, Univ.
of Calif. Press, 1966

"Gravity must be a scholastic occult quality or the effect of a miracle.”

—Gottfried Wilhelm Leibniz; See Let Newton Be!, by J. Fauvel, R. Flood, M. Shorthand,
and R. Wilson, Oxford Univ. Press, 1988

6.1] Introduction

Throughout the year ancient peoples observed the five visible planets slowly move
through the fixed constellations of the zodiac in a fairly regular fashion. But occasion-
ally, at times that occurred with astonishing predictability, they mysteriously halted their
slow forward progression, suddenly reversing direction for as long as a few weeks before
again resuming their steady march through the sky. This apparent quirk of planetary
behavior is called retrograde motion. Unmasking its origin would consume the intellec-
tual energy of ancient astronomers for centuries to come. Indeed, horribly complicated
concoctions from minds shackled by philosophical dogma and fuzzy notions of physics,
such as the cycles and epicycles of Ptolemy (125 c.E.) and others of like-minded men-
tality, would serve as models of physical reality for more than 2000 years. Ultimately,
Nicolaus Copernicus (1473-1543) demonstrated that retrograde motion was nothing
other than a simple consequence of the relative motion between Earth and the other plan-
ets each moving in a heliocentric orbit. Nonetheless, even Copernicus could not purge
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himself of the Ptolemaic epicycles, constrained by the dogma of uniform circular motion
and the requirement of obtaining agreement between the observed and predicted irreg-
ularities of planetary motion.

It was not until Johannes Kepler (1571-1630) turned loose his potent intellect on the
problem of solving the orbit of Mars, an endeavor that was to occupy him intensely for
20 years, that for the first time in history, scientists glimpsed the precise mathematical
nature of the heavenly motions. Kepler painstakingly constructed a concise set of three
mathematical laws that accurately described the orbits of the planets around the Sun.
These three laws of planetary motion were soon seen by Newton as nothing other than
simple consequences of the interplay of a law of universal gravitation with three funda-
mental laws of mechanics that Newton had developed mostly from Galileo’s investigations
of the motions of terrestrial objects. Thus, Newton was to incorporate the physical work-
ings of all the heavenly bodies within a framework of natural law that resided on Earth.
The world would never be seen in quite the same way again.

Newton's Law of Universal Gravitation

Newton formally announced the law of universal gravitation in the Principia, published
in 1687. He actually worked out much of the theory at his family home in Woolsthorpe,
England, as early as 1665-1666, during a six-month hiatus from Cambridge University,
which was closed while a plague ravaged most of London.

The law can be stated as follows:
Every particle in the universe attracts every other particle with a force whose magnitude
is proportional to the product of the masses of the two particles and inversely proportional

to the square of the distance between them. The direction of the force lies along the straight
line connecting the two particles.

We can express the law vectorially by the equation

m,-mj l',-j
F,=G—51| L (6.1.1)

o\Ty

where F is the force on particle i of mass m, exerted by particle j of mass m;. The vector
r; is the directed line segment running from particle i to particlej, as shown in Figure 6.1.1.
The law of action and reaction requires that F;; = —Fj. The constant of proportionality G

Figure 6.1.1 Action and reaction in Newton’s law of
gravity.
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is known as the universal constant of gravitation. Its value is determined in the laboratory
by carefully measuring the force between two bodies of known mass. The internationally
accepted value at present is, in SI units,

G = (6.67259 £ 0.00085) x 10 Nm® kg

All our present knowledge of the masses of astronomical bodies, including Earth, is based
on the value of this fundamental constant."

This law is an example of a general class of forces termed central; that is, forces
whose lines of action either emanate from or terminate on a single point or center.
Furthermore, if the magnitude of the force, as is the case with gravitation, is independent
of any direction, the force is isotropic. The behavior of such a force may be visualized
in the following way: Imagine being confined to a hypothetical, spherical surface cen-
tered about a massive particle that serves as a source of gravity. When walking around
that surface, one would discover that the force of attraction would always be directed
toward the center, and the magnitude of this force would be independent of position
on the spherical surface. Nothing about this force could be used to determine position
on the sphere.

The main purpose of this chapter is to study the motion of a particle subject to a cen-
tral, isotropic force with particular emphasis on the force of gravity. In carrying out this
study, we follow Newton’s original line of inquiry, which led to the formulation of his uni-
versal law of gravitation. In so doing, we hope to engender an appreciation for the tremen-
dous depth of Newton’s intellectual achievement.

Gravitation: An Inverse-Square Law?

While home at Woolsthorpe in 1665, Newton took up the studies that were to occupy him
for the rest of his life: mathematics, mechanics, optics, and gravitation. Perhaps the most
classic image we have of Newton depicts him sitting under an apple tree and being struck
by a falling apple. This visual image is meant to convey the notion of Newton pondering
the nature of gravity, most probably wondering whether or not the force that caused the
apple to fall could be the same one that held the Moon in its orbit about the Earth.
Galileo, who very nearly postulated the law of inertia in its Newtonian form, inex-
plicably failed to apply it correctly to the motion of heavenly objects. He missed the most
fundamental point of circular motion, namely, that objects moving in circles are accel-
erated inward and, therefore, require a resultant force in that direction. By Newton’s time,
anumber of natural philosophers had come to the conclusion that some sort of force was
required, not to accelerate a planet or satellite inward toward its parent body, but to “main-
tain it in its orbit.” In 1665, the Italian astronomer Giovanni Borelli had presented a theory
of the motion of the Galilean Moons of Jupiter in which he stated that the centrifugal

'G is the least accurately known of all the basic physical constants. This stems from the fact that the gravita-
tional force between two bodies of laboratory size is extremely small. For a review of the current situation regard-
ing the determination of G, see an article by J. Maddox, Nature, 30, 723 (1984). Also, H. de Boer, “Experiments
Relating to the Newtonian Gravitational Constant,” in B. N. Taylor and W, D. Phillips, eds., Precision
Measur ts and Fund, tal Constants (Natl. Bur. Stand. U.S., Spec. Publ., 617, 1984).
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force of a Moon’s orbital motion was exactly in equilibrium with the attractive force of
]uplter

Newton was the first to realize that Earth’s Moon was not “balanced in its orbit” but
was undergoing a centripetal acceleration toward Earth that had to be caused by a cen-
tripetal force. Newton surmised that this force was the same one that attracted all Earth-
bound objects toward its surface. This had to be the case, because the kinematical
behavior of the Moon was no different from that of any object falling toward Earth. The
falling Moon never hits Earth because the Moon has such a large tangential velocity that,
as it falls a given distance, it moves far enough sideways that Earth’s surface has curved
away by that same distance. No one at the time even remotely suspected that the cen-
tripetal acceleration of the Moon and the gravitational acceleration of an apple falling on
the surface of Earth had a common origin.

Newton demonstrated that if a falling apple could also be given a large enough hor-
izontal velocity, its motion would be identical to that of the orbiting Moon (the apple’s orbit
would just be closer to Earth), thus making the argument for a common origin of an attrac-
tive gravitational force even more convincing. Newton further reasoned that the centripetal
acceleration of an apple put in orbit about Earth just above its surface would be identi-
cal to its gravitational free-fall acceleration. (Imagine an apple shot horizontally out of a
powerful cannon. Let there be no air resistance. If the initial horizontal speed of the pro-
jected apple were adjusted just right, the apple would never hit Earth because Earth’s
surface would fall away at the same rate that the apple would fall toward it, just as is the
case for the orbiting Moon. In other words, the apple would be in orbit and its centripetal
acceleration would exactly equal the g of an apple falling from rest.) Thus, with this single
brilliant mental leap, Newton was about to uncover the first and one of the most beauti-
ful of all unifying principles in physics, the law of universal gravitation.

The critical question for Newton was figuring out just how this attractive force
depended on distance away from Earth’s center. Newton knew that the strength of Earth’s
attractive force was proportional to the acceleration of falling objects at whatever dis-
tance from Earth they happened to be. The Moon’s acceleration toward Earth is a = 0”/r,
where v is the speed of the Moon and r is the radius of its circular orbit. (This is equal to
the local value of g ) Newton deduced, with the aid of Kepler’s third law (the square of
the orbital period 7 is proportional to the cube of the distance from the center of the orbit
r*), that this acceleration should vary as 1/r*. For example, if the Moon were 4 times far-
ther away from Earth than it actually is, then by Kepler’s third law its period of revolution
would be 8 times longer, and its orbital speed 2 times slower; consequently, its cen-
tripetal acceleration would be 16 times less than it is— or weaker as the inverse square
of the distance.

*Recall from Chapter 5 that centrifugal force is an inertial force exerted on an object in a rotating frame of ref-
erence. In the context here, it arises from the centripetal acceleration of a Galilean moon traveling in essen-
tially a circular orbit around Jupiter. To most pre-Newtonian thinkers, the centrifugal force acting on planets
or satellites was a real one. Many of their arguments centered on the nature of the force required to “balance
out” the centrifugal force. They completely missed the point that from the perspective of an inertial observer,
the satellite was undergoing centripetal acceleration inward. They were thus arguing from the perspective of
anoninertial observer, although none of them had such a precise understanding regarding the distinction.
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Newton thus hypothesized that the local value of g for all falling objects and, hence,
the attractive force of gravity, should vary accordingly. To confirm this hypothesis Newton
had to calculate the centripetal acceleration of the Moon, compare it to the acceleration
g of a falling apple, and see if the ratio were equal to that of the inverse square of their
respective distances from the center of the Earth. The Moon’s distance is 60 Earth radii.
The force of Earth’s gravity must, therefore, weaken by a factor of 3600. The rate of fall
of an apple must be 3600 times larger than that of the Moon or, put another way, the dis-
tance an apple falls in 1 s should equal the distance the Moon falls toward Earth in 1 min,
the distance of fall being proportional to time squared. Unfortunately, Newton made a
mistake in carrying out this calculation. He assumed that an angle of 1° subtended an arc
length of 60 miles on the surface of Earth. He got this from a sailor’s manual, the only
book at hand. (This distance is, in fact, 60 nautical miles, or 69 English miles.) Setting this
equal to 60 English miles of 5280 ft each, however, he computed the Moon’s distance of
fall in 1 s to be 0.0036 ft, or 13 ft in 1 min. Through Galileo’s experiments with falling
bodies, repeated later with more accuracy, an apple (or any other body) had been meas-
ured to fall about 15 ft in 1 s on Earth. The values are very close, differing by about
1 part in 8, but such a difference was great enough that Newton abandoned his brilliant
idea! Later, he was to use the correct values, get it exactly right, and, thus, demonstrate
an inverse-square law for the law of gravity.

Proportional to Mass?

Newton also concluded that the force of gravity acting on any object must be proportional
to its mass (as opposed to, say, mass squared or something else). This conclusion is deriv-
able from his second law of motion and Galileo’s finding that the rate of fall of all objects
is independent of their weight and composition. For example, let the force of gravity
of Earth acting on some object of inertial mass m be proportlonal to that mass. Then,
according to Newton’s second law of motion, F,,, =k - mir*=m-a=m-.g Thus,g= k.
The masses cancel out in this dynamical equation, and the acceleration g depends only
on some constant k (which, in some way, must depend on the mass of the Earth but,
obviously, is the same for all bodies attracted to the Earth) and the distance r to the
center of the Earth. So all bodies fall with the same acceleration regardless of their mass or
composition. The gravitational force must be directly proportional to the inertial mass,
or this precise cancellation would not occur. Then all falling bodies would exhibit mass-
dependent accelerations, contrary to all experiments designed to test such a hypothesis. In
fact the equivalence of inertial and gravitational mass of all objects is one of the corner-
stones of Einstein’s general theory of relativity. For Newton this equivalence remained a
mystery to his death.

Product of Masses, Universality?

Newton also realized that if the force of gravity were to obey his third law of motion and
if the force of gravity were proportional to the mass of the object being attracted, then
it must also be proportional to the mass of the attracting object. Such a requirement leads
us inevitably to the conclusion that the law of gravity must, therefore, be “universal”;
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that is, every object in the universe must attract (albeit very weakly, in most cases) every
other object in the universe. Let us see how this comes about. Imagine two masses m;
and my separated by a distance r. The forces of attraction on 1 by 2 and on 2 by 1 are
Fy9=kom, /r® and Fy; = kymy /r®, where k; and k, are “constants” that, as we are forced to
conclude, must depend on the mass of the attracting object. According to Newton’s third
law, these forces have to be equal in magnitude (and opposite in direction); therefore,
kym; = kymy or ky/k; = my/m;. To ensure the equality of this ratio, the strength of the
attraction of gravity must be proportional to the mass of the attractive body, that is, k; =
Gm;. Thus, the force of gravity between two particles is a central, isotropic law of force
possessing a wonderful symmetry: particle 1 attracts particle 2 and particle 2 attracts par-
ticle 1 with a magnitude and direction, obeying Newton’s third law, proportional to the
product of each of their masses and varying inversely as the square of their distance of
separation. This conclusion was the work of true genius!

6.2 Gravitational Force between
a Uniform Sphere and a Particle

Newton did not publish the Principia until 1687. There was one particular problem that
bothered him and made him reluctant to publish. We quickly glossed over that problem
in our preceding discussion. Newton derived the inverse-square law by assuming that the
relevant distance of separation between two objects, such as Earth and Moon, is the dis-
tance between their respective geometrical centers. This does not seem to be unreason-
able for spherical objects like the Sun and the planets, or Earth and Moon, whose distances
of separation are large compared with their radii. But what about Earth and the apple?
If you or I were the apple, looking around at all the stuff in Earth attracting us, we would
see lines of gravitational force tugging on us from directions all over the place. There is
stuff to the east and stuff to the west whose directions of pull differ by 180°. Who is to
say that when we properly add up all the force vectors, due to all this attractive stuff, we
get a resultant vector that points to the center of Earth and whose strength depends on
the mass of Earth and inversely on the distance to its center squared, as though all Earth’s
mass were completely concentrated at its center?

Yet, this is the way it works out. It is a tricky problem in calculus that requires a
vector sum of infinitessimal contributions over an infinite number of mass elements that
lead to a finite result. At that time no one knew calculus because Newton had just
invented it, probably to solve this very problem! He was understandably reluctant to
publish such a proof, couched in a framework of nonexistent mathematics. Because
everyone knows calculus in our present age of enlightenment, we will go ahead and use
it to solve the problem, proving that, for any uniform spherical body or any spherically
symmetric distribution of matter, the gravitational force exerted by it on any external
particle can be calculated by simply assuming that the entire mass of the distribution
acts as though concentrated at its geometric center. Only an inverse-square force law
works this way.

Consider first a thin uniform shell of mass M and radius R. Let r be the distance from
the center O to a test particle P of mass m (Fig. 6.2.1). We assume that r > R. We shall
divide the shell into circular rings of width R A6 where, as shown in the figure, the angle
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Figure 6.2.1 Coordinates for
calculating the gravitational field
of a spherical shell.

POQ is denoted by 6, Q being a point on the ring. The circumference of our represen-
tative ring element is, therefore, 27R sin 6, and its mass AM is given by

AM = p27R? sin 6 AQ 6.2.1)

where p is the mass per unit area of the shell.

Now the gravitational force exerted on P by a small subelement Q of the ring (which
we regard as a particle) is in the direction PQ. Let us resolve this force AFy, into two com-
ponents, one component along PO, of magnitude AF 0 Cos ¢, the other perpendicular to
PO, of magnitude AFg, sin ¢. Here ¢ is the angle OPQ, as shown in Figure 6.2.1. From
symmetry we can easily see that the vector sum of all of the perpendicular components
exerted on P by the whole ring vanishes. The force AF exerted by the entire ring is, there-
fore, in the direction PO, and its magnitude AF is obtained by summing the components
AF cos ¢. The result is

m

2 ..
AF=GTEY o5 =mETPR Snbcosd xq 6.22)
s

N

where s is the distance PQ (the distance from the particle P to the ring) as shown. The
magnitude of the force exerted on P by the whole shell is then obtained by taking the limit
of A6 and integrating

F=Gm2npR® | " 5in 6 cos §d6 623)
S

The integral is most easily evaluated by expressing the integrand in terms of s. From the
triangle OPQ we have, from the law of cosines,

r2+R*-2rRcos 0 =s® 6.2.4)
Differentiating, because both R and r are constant, we have,
rRsin0 d6 =s ds (6.2.5)
Also, in the same triangle OPQ, we can write

2,9 p?
cosp=S T R (6.2.6)

2rs
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On performing the substitutions given by the preceding two equations, and changing the
limits of integration from [0, 7] to [r — R, r + R] we obtain

+R g +r? - R?
F=Gm2rpR*[ SR

. 2 _p2
GmMJ-+R 1+r 2R ds
s

= 4Rr2 R
_GmM

1‘2

6.2.7)

where M = 47pR? is the mass of the shell. We can then write vectorially

F= —GM—;"er (6.2.8)
r

where e, is the unit radial vector from the origin O. The preceding result means that
a uniform spherical shell of matter attracts an external particle as if the whole mass
of the shell were concentrated at its center. This is true for every concentric spheri-
cal portion of a solid uniform sphere. A uniform spherical body, therefore, attracts an
external particle as if the entire mass of the sphere were located at the center. The same
is true also for a nonuniform sphere provided the density depends only on the radial
distance r.

The gravitational force on a particle located inside a uniform spherical shell is zero.
The proof is left as an exercise (see Problem 6.2).

6.3| Kepler's Laws of Planetary Motion

Kepler’s laws of planetary motion were a landmark in the history of physics. They played
a crucial role in Newton’s development of the law of gravitation. Kepler deduced these
laws from a detailed analysis of planetary motions, primarily the motion of Mars, the clos-
est outer planet and one whose orbit is, unlike that of Venus, highly elliptical. Mars had
been most accurately observed, and its positions on the celestial sphere dutifully recorded
by Kepler’s irascible but brilliant patron, Tycho de Brahe (1546-1601). Kepler even
used some sightings that had been made by the early Greek astronomer Hipparchus
(190-125 B.c.E.). Kepler’s three laws are:

I. Law of Ellipses (1609)
The orbit of each planet is an ellipse, with the Sun located at one of its foci.

II. Law of Equal Areas (1609)
Aline drawn between the Sun and the planet sweeps out equal areas in equal times
as the planet orbits the Sun.

III. Harmonic Law (1618)
The square of the sidereal period of a planet (the time it takes a planet to complete
one revolution about the Sun relative to the stars) is directly proportional to the
cube of the semimajor axis of the planet’s orbit.
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The derivation of these laws from Newton’s theories of gravitation and mechanics was
one of the most stupendous achievements in the annals of science. A number of Newton's
colleagues who were prominent members of the British Royal Society were convinced
that the Sun exerted a force of gravitation on the planets, that the strength of that force
must diminish by the square of the distance between the Sun and the planet, and that this
fact could be used to explain Kepler’s laws. (Kepler’s second law is, however, a statement
that the angular momentum of a planet in orbit is conserved, a consequence only of the
central nature of the gravitational force, not its inverse-square feature.) The trouble was,
as noted by Edmond Halley (1656—1742) over lunch with Robert Hooke (1635-1703) and
Christopher Wren (1632—1723) in January of 1684, that no one could make the connec-
tion mathematically. Part of the problem was that no one, except the silent Newton, could
show that the gravitational forces of spherical bodies could be treated as though they
emanated from and terminated on their geometric centers. Hooke brashly stated that he
could prove the fact that the planets traveled in elliptical orbits but had not told anyone
how to do it so that they might, in attempting a solution themselves, appreciate the mag-
nitude of the problem. Wren offered a prize of 40 shillings—in those days the price of
an expensive book—to the one who could produce such a proof within two months.
Neither Hooke, nor anyone else, won the prize!

In August of 1684, while visiting Cambridge, Halley stopped in to see Newton and
asked him what would be the shape of the planets’ orbits if they were subject to an
inverse-square attractive force by the Sun? Newton replied, without hesitation, “An
ellipse!” Halley wanted to know how Newton knew this, and Newton said that he had cal-
culated it years ago. Halley was stunned. They looked through thousands of Newtons
papers but could not find the calculation. Newton told Halley that he would redo it and
send it to him.

Newton had actually done the calculation five years earlier, in 1679, stimulated in part
by Robert Hooke, the aforementioned claimant to the inverse-square law, who had writ-
ten Newton with questions about the trajectory of objects falling toward a gravitationally
attractive body. Unfortunately, there was a mistake in the calculation of Newton’s written
reply to Hooke. Hooke, with glee, pointed out the mistake, and the angry Newton, con-
centrating on the problem with renewed vigor, apparently straightened things out. These
subsequent calculations, however, also contained a mistake, which is perhaps why Newton
failed to find them when queried by Halley. At any rate, Newton furiously attacked the
problem again and within three months sent Halley a paper in which he correctly derived
all of Kepler’s laws from an inverse-square law of gravitation and the laws of mechanics.
Thus was the Principia born. In the sections that follow we, too, derive Kepler’s laws from
Newton’s fundamental principles.

6.4| Kepler's Second Law: Equal Areas

Conservation of Angular Momentum

Keplers second law is nothing other than the statement that the angular momentum of
a planet about the Sun is a conserved quantity. To show this, we first define angular
momentum and then show that its conservation is a general consequence of the central
nature of the gravitational force.
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The angular momentum of a particle located a vector distance r from a given origin
and moving with momentum p is defined to be the quantity L = r X p. The time deriv-
ative of this quantity is

dL _d(xXxp) dp
I & vXprrxs (6.4.1)
but
vXp=vXmv=mvXv=0 6.4.2)
Thus,
dp dL
rXF=rX—-=—r (6.4.3)

where we have used Newton’s second law, F = dp/dk.

The cross product N =r X F is the moment of force, or torque, on the particle about
the origin of the coordinate system. If r and F are collinear, this cross product vanishes
and so does L. The angular momentum L, in such cases, is a constant of the motion. This
is quite obviously the case for a particle (or a planet) subject to a central force F, that is,
one that either emanates or terminates from a single point and whose line of action lies
along the radius vector r.

Furthermore, because the vectors r and v define an “instantaneous” plane within
which the particle moves, and because the angular momentum vector L is normal to
this plane and is constant in both magnitude and direction, the orientation of this
plane is fixed in space. Thus, the problem of motion of a particle in a central field is
really a two-dimensional problem and can be treated that way without any loss of
generality.

Angular Momentum and Areal Velocity
of a Particle Moving in a Central Field

As previously mentioned, Kepler's second law, the constancy of the areal velocity, A, of
a planet about the Sun, depends only upon the central nature of the gravitational
force and not upon how the strength of the force varies with radial distance from the Sun.
Here we show:that this law is equivalent to the more general result that the angular
momentum of any particle moving in a central field of force is conserved, as shown in
the preceding section.

To do so, we first calculate the magnitude of the angular momentum of a particle
moving in a central field. We use polar coordinates to describe the motion. The velocity
of the particle is

v=ei+eyrd (6.4.4)

where e, is the unit radial vector and ey is the unit transverse vector. (see Figure 6.4.1(a)).
The magnitude of the angular momentum is

L=|rXmv|=|re, xm(ie, +rfe,)| (6.4.5)
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Figure 6.4.1 (a) Angular
momentum L =[r X mv|of a

particle moving in a central ) 5 i 0 < 7
field. (b) AreadA =  |r X dr]| / /
swept out by the radius vector r // //
of the particle as it moves in a ’ ’
central field. (a) (b)
Because |e, X e,|=0and |e, X ey =1, we find
L =mr*0 = constant (6.4.6)

for any particle moving in a central field of force including a planet moving in the gravi-
tational field of the Sun.

Now, we calculate the “areal velocity,” A, of the particle. Figure 6.4.1(b) shows the
triangular area, dA, swept out by the radius vector r as a planet moves a vector distance
dr in a time dt along its trajectory relative to the origin of the central field. The area of
this small triangle is

dA = |rxdr|=1|re, X (e,dr +e,rd6)| = 5 r(rd6) 6.4.7)

(Note: any increment of motion along the radial direction, e,, does not add to,
or subtract from, the area dA—nor does it contribute anything to the angular
momentum of the particle about the center of force.)

Thus, the areal velocity, or the rate at which “area is swept out” by the radius vector
pointing to the moving particle is

—=A=1r%-= EI—J— = constant (6.4.8)
m

An equivalent way to see this relation is to note that, because dr = vdt, Equation 6.4.7
can be written as

dA=|rxdr|=3|rx vdt|=—£—dt (6.4.9)
2m

which also reduces to Equation 6.4.8.

Thus, the areal velocity, A, of a particle moving in a central field is directly propor-
tional to its angular momentum and, therefore, is also a constant of the motion, exactly
as Kepler discovered for planets moving in the central gravitational field of the Sun.
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EXAMPLE 6.4.1

Let a particle be subject to an attractive central force of the form f(r)where r is the dis-
tance between the particle and the center of the force. Find f(r) if all circular orbits are
to have identical areal velocities, A.

Solution:

Because the orbits are circular, the acceleration, #, has no transverse component and
is entirely in the radial direction. In polar coordinates, it is given by Equation 1.11.10

a,= #—rf% = —r@?®
because # =0. Thus,
-mrd® = f(r)

Because the areal velomty is the same for all circular orbits, then the angular momentum
of the partlcle L=mr*9, must be also. Multiplying and dividing the above expression by
the factor, 7°, yields the relation

_ mr*g® L

3 ——-——-——f(r)

r

or in terms of the areal velocity, A=L/2m

12
Fry=-4ma

Therefore, the attractive force for which all circular orbits have identical areal veloci-
ties (and angular momenta) is the inverse r-cube.

6.5| Kepler’s First Law: The Law of Ellipses

To prove Kepler' first law, we develop a general differential equation for the orbit of a
particle in any central, isotropic field of force. Then we solve the orbital equation for the
specific case of an inverse-square law of force.

First we express Newton’ differential equations of motion using two-dimensional polar
coordinates instead of three, remembering from our previous discussion that no loss of
generality is incurred because the motion is confined to a plane. The equation of motion
in polar coordinates is

mi = f(r)e, (65.1)
wheref(r) is the central, isotropic force that acts on the particle of mass m. It is a function
only of the scalar distance r to the force center (hence, it is isotropic), and its direction is
along the radius vector (hence, it i is central). As shown in Equations 1.11.9 and 1.11.10, the
radial component of #is # —r@” and the transverse component is 270 +r6. Thus, the
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component differential equations of motion are

m(#—ré*) = f(r) (6.5.2a)
m276 +r6) =0 (6.5.2b)

From the latter equation it follows that (see Equation 1.11.11)

%(rzé) =0 (65.3)
or
%0 =constant = [ (6.5.4)
From Equation 6.4.6 we see that
=== Jrxv] 653)

Thus, ! is the angular momentum per unit mass. Its constancy is simply a restatement of
a fact that we already know, namely, that the angular momentum of a particle is constant
when it is moving under the action of a central force.

Given a certain radial force function f(r), we could, in theory, solve the pair of dif-
ferential equations (Equations 6.5.2a and b) to obtain r and 8 as functions of t. Often one
is interested only in the path in space (the orbit) without regard to the time t. To find the
equation of the orbit, we use the variable « defined by

r= 1 (6.5.6)
u
Then
1 1 .du du
= —— = =_]= 6.5.
TR u? do de 657
The last step follows from the fact that
6=’ (6.5.8)
according to Equations 6.5.4 and 6.5.6.
Differentiating a second time, we obtain
d du do d du . d’u d*u
F=d—— =l ———=-1— =% — .
ST %deT @ dede Cdet ' de ©59

Substituting the values found for r, , and # into Equation 6.5.2a, we obtain

2
m[—lzu2 g-é'; - %(lzu“ )} = fu™) (6.5.102)
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which reduces to
&
de*
Equation 6.5.10b is the differential equation of the orbit of a particle moving under a cen-
tral force. The solution gives u (hence, ) as a function of 6. Conversely, if one is given

the polar equation of the orbit, namely, r=r(6) = u ™, then the force function can be found
by differentiating to get d°u/d6” and inserting this into the differential equation.

+u= —ﬁ fu™) (6.5.10b)

EXAMPLE 6.5.1

A particle in a central field moves in the spiral orbit

r=c6’
Determine the force function.
Solution:
We have
ol
c6>
and
du -2 _3 dzu 6 —4 2
@ _2p au _Dot_¢
dé ¢ de* ¢ o

Then from Equation 6.5.10b
60142 +u= __ﬂﬁ%—l—th— f(u_l)

Hence,
fw™) =-ml*(6cu® +u®)
and
6 1
fr= —rnl2(r—f+r—3)

Thus, the force is a combination of an inverse cube and inverse—fourth power law.

EXAMPLE 6.5.2

In Example 6.5.1 determine how the angle 8 varies with time.

Solution:

Here we use the fact that [ = r*§ is constant. Thus,

1

6=t =lc294
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or
6*do = ciz dt
and so, by integrating, we find
& =lc™t
5

where the constant of integration is taken to be zero, so that # =0 at ¢ =0. Then we can
write

0= atll5

where o= constant = (5lc )"

Inverse-Square Law
We can now solve Equation 6.5.10b for the orbit of a particle subject to the force of grav-

ity. In this case

fr=-

k
- (6.5.11)

r

where the constant k = GMm. In this chapter we always assume that M >>m and remains
fixed in space. The small mass m is the one whose orbit we calculate. (A modification in
our treatment is required when M = m, or at least not much greater than m. We present
such a treatment in Chapter 7.) The equation of the orbit (Equation 6.5.10b) then
becomes

d’u k

d—82+u = W (6512)

Equation 6.5.12 has the same form as the one that describes the simple harmonic oscil-
lator, but with an additive constant. The general solution is

k
u=Acos(0-—00)+m (6.5.13)
or
e 1
k/ml* + Acos(6 - 6,) (6.5.14)

The constants of integration, A and 6, are determined from initial conditions or from the
values of the position and velocity of the particle at some particular instant of time. The
value of 6,, however, can always be adjusted by a simple rotation of the coordinate system
used to measure the polar angle of the particle. Consistent with convention, we set
8, =0, which corresponds to a direction toward the point of the particle’s closest approach
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Figure 6.5.1 The ellipse
£ff  Thetwo foci of the ellipse
a

Semimajor axis

b Semiminor axis: b = (1 - €%

€ Eccentricity: each focus displaced from center by ea

a Latus rectum: Distance of focus from point on the ellipse
perpendicular to major axis: = (1 - €’ a

o Distance from the focus to the pericenter: ro=(1 - €)a

n Distance from the focus to the apocenter: r; = (1 + €)a

to the origin. We can then rewrite Equation 6.5.14 as
re mi®/k
1+(Aml*/k)cos 8
This equation describes an ellipse (see Figure 6.5.1) with the origin at one of its foci, in
the case where the motion of the particle is bound.

An ellipse is defined to be the locus of points whose total distance from two foci,
fandf’, is a constant, that is,

(6.5.15)

r+r’ = constant = 2a (6.5.16)

where a is the semimajor axis of the ellipse, and the two foci are offset from its center,
each by an amount ea. € is called the eccentricity of the ellipse. We can show that
Equation 6.5.15 is equivalent to this fundamental definition of the ellipse by first finding
a relation between r and r’ using the Pythagorean theorem (see Figure 6.5.1).

r'? = r2sin? 6+ (2ea + r cos 6)?

(6.5.17)
=12+ 4ea(ea+rcos 0)
and then substituting the fundamental definition, 7 = 22 — r, into it to obtain
_a(l-€”)
= Ttecosd (6.5.18a)

As can be seen from Figure 6.5.1, at 8 = 1/2, r = a(1 — €”) = o the latus rectum of the
ellipse. Hence, Equation 6.5.18a can be put into the form

o

r=— (6.5.18b)
1+€ecos@
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Thus, it is equivalent to Equation 6.5.15 with

2
o= mlT (6.5.19)
and
2
€= A’Zl (6.5.20)

Even though Equations 6.5.18a and b were derived for an ellipse, they are more general
than that: they actually describe any conic section and all possible orbits other than ellip-
tical around the gravitational source.

A conic section is formed by the intersection of a plane and a cone (see Figure 6.5.2a—d).
The angle of tilt between the plane and the axis of the cone determines the resulting section.
This angle is related to the eccentricity € in Equations 6.5.18a and b. When 0 < e < 1,
Equations 6.5.18a and b describe an ellipse. It is formed when the angle between the plane
and the axis of the cone is less than /2 but greater than 8, where s the generating angle
of the cone (see Figure 6.5.2b). The expression for a circle, r = g, is retrieved when € =0,
and it is formed when the plane is perpendicular to the cone’s axis (see Figure 6.5.2a). As
€ - 1,a > oo, but the product o = a(1 - €°) remains finite and when € = 1 Equation 6.5.18a
and b then describe a parabola. The angle between the plane and the axis of the cone is
then equal to 3 (see Figure 6.5.2c). Finally, when e > 1, Equations 6.5.18a and b describe
a hyperbola, and the angle of tilt lies between 0 and B (see Figure 6.5.2d). The different
conic sections as seen by an observer positioned perpendicular to the plane in each of
Figures 6.5.2a—d are shown in Figure 6.5.2e. They correspond to different possible orbits
of the particle.

In reference to the elliptical orbits of the planets around the Sun (see Figure 6.5.1),
19, the pericenter of the orbit, is called the perihelion, or distance of closest approach to
the Sun; ry, the apocenter of the orbit, is called the aphelion, or the distance at which the
planet is farthest from the Sun. The corresponding distances for the orbit of the Moon
around the Earth—and for the orbits of the Earth’s artificial satellites—are called the
perigee and apogee, respectively. From Equation 6.5.18b, it can be seen that these are the
values of r at 8 = 0 and 6 = 7, respectively:

1, = (6.5.21a)

(6.5.21b)

1+e
n l-e
The orbital eccentricities of the planets are quite small. (See Table 6.5.1.) For example,
in the case of Earth’s orbit €= 0.017, r, = 91,000,000 mi, and r; = 95,000,000 mi. On the
other hand, the comets generally have large orbital eccentricities (highly elongated orbits).
Halley’s Comet, for instance, has an orbital eccentricity of 0.967 with a perihelion distance
of only 55,000,000 mi, while at aphelion it is beyond the orbit of Neptune. Many comets
(the nonrecurring type) have parabolic or hyperbolic orbits.
The energy of the object is the primary factor that determines whether or not its orbit
is an open (parabola, hyperbola) or closed (circle, ellipse) conic section. “High”-energy
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€ > 1, hyberbola

(¢

= 1, parabola

(d (e)

Figure 6.5.2 (a) Circle: e=0. (b) Ellipse: €< 1. (c) Parabola: €= 1. (d) Hyperbola: €> 1.
(e) The family of conic sections.

objects follow open, unbound orbits, and “low”-energy objects follow closed, bound ones.
We treat this subject in greater detail in Section 6.10. Using the language of a noniner-
tial observer, perfectly circular orbits correspond to a situation when the gravitational and
centrifugal forces of a planet are exactly balanced. It should surprise you to see that the
orbits of the planets are nearly circular.
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1t is very difficult to envision just how such a situation might arise from initial con-
ditions. If a planet is hurtling around the Sun a little too fast, the centrifugal force slightly
outweighs the gravitational force, and the planet moves away from the Sun a little bit. In
doing so, it slows down until the force of gravity begins to overwhelm the centrifugal force.
The planet then falls back in a little bit closer to the Sun, picking up speed along the way.
The centrifugal force builds up to a point where it again outweighs the force of gravity
and the process repeats itself. Thus, elliptical orbits can be seen as the result of a contin-
uing tug of war between the slightly unbalanced gravitational and centrifugal forces that
inevitably occurs whenever the tangential velocity of the planet is not adjusted just so.
These forces must grow and shrink in such a way that the stability of the orbit is ensured.
The criterion for stability is discussed in Section 6.13.

One way in which these two forces could be perfectly balanced all the way around
the orbit would be if the planet started off just right; that is, very special initial conditions
would have to have been set up in the beginning, so to speak. It is difficult to imagine how
any natural process could have established such nearly perfect prerequisites. Hence, if
planets are bound to the Sun at all, one would think that they would be most likely to travel
in elliptical orbits just like Kepler said, unless something happened during the course of
solar system evolution that brought the planets into circular orbits. We leave it to the stu-
dent to think about just what sort of thing might do this.

EXAMPLE 6.5.3

Calculate the speed of a satellite in circular orbit about Earth.

Solution:

In the case of circular motion, the orbital radius is given by r, = a = &= ml’/k because
the eccentricity is zero (Equations 6.5.18a and 6.5.19). In Earth’s gravitational field,
the force constant is k = GM,m in which M, is the mass of Earth and m is the mass of the
satellite. The angular momentum of the satellite per unit mass [ = v,r,, where v, is the

speed of the satellite. Thus,

_ m(v,r,)?
¢ GM,m

As shown in Example 2.3.2, the product GM, can be found by noting that the force of

gravity at Earth’s surface ismg = GM,/R2or GM, = ng, where R, is the radius of Earth.
Thus, the speed of a satellite in circular orbit is

2
R2
N =[g ]
TO

For satellites in low-lying orbits close to Earth’s surface, r, = R,, so the speed is
0.~ (gRo)"* = (9.8 ms™ x 6.4 x 10° m)"? = 7920 m/s, or about 8 km/s.
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EXAMPLE 6.5.4

The most energy-efficient way to send a spacecraft to the Moon is to boost its speed
while it is in circular orbit about the Earth such that its new orbit is an ellipse. The boost
point is the perigee of the ellipse, and the point of arrival at the Moon is the apogee
(see Figure 6.5.3). Calculate the percentage increase in speed required to achieve such
an orbit. Assume that the spacecraft is initially in a low-lying circular orbit about Earth.
The distance between Earth and the Moon is approximately 60R,, where R, is the
radius of Earth.

Solution:

The radius and speed of the craft in its initial circular orbit was calculated in Example 6.5.3.
That radius is the perigee distance of the new orbit, r, = R,. Let v, be the velocity
required at perigee to send the craft to an apogee at 7, = 60R,. Because the eccentric-
ity of the initial circular orbit is zero, we have (Equations 6.5.19, 6.5.21a)

(24

le
Tetl Tk

o
But the angular momentum per unit mass for the circular orbit, /, (Equation 6.5.4), is
a constant and can be set equal to
I,=r%= rgéo =140,
On substituting this into the preceding expression, we obtain
k

o=
mo?

After the speed boost from v, to v, at perigee, from Equation 6.5.21a we obtain an
elliptical orbit of eccentricity € given by

Apogee Perigee

Figure 6.5.3 Spacecraft
changing from a circular to an
elliptical orbit.
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where we made use of the fact that the new angular momentum per unit mass is [ = v,t;.
Inserting the previous expression for rg into the preceding one gives us the ratio of the
speeds required to achieve the new eccentric orbit

2
(&] =e+1
UC

We can find the eccentricity in terms of the distances of perigee and apogee from the
geometry of an ellipse

r=1+ea=(+e1tn0)

2
~(+e) =(&j =i
v, n+r,
Putting in numbers for the required orbit, we obtain
o _ [120R, _, 0
n+rn 61R,

Thus, a 40% boost up to a speed of about 11.2 km/s is required.

6.6 | Kepler's Third Law: The Harmonic Law

Why is Kepler’s third law, relating orbital period to distance from the Sun, called the
harmonic law? Kepler’s work, more than that of any of the other great scientists who
were trying to unlock the mysteries of planetary motion, is a wonderful illustration of
the profound effect that intense hunger for knowledge and personal belief have on the
growth of science. Kepler held the conviction that the world, which had treated him so
harshly at times, nonetheless, was fundamentally a beautiful place. Kepler believed
in the Pythagorean doctrine of celestial harmony. The world was a tumultuous place,
and the planets were discordant only because humankind had not yet learned how to
hear the true harmony of the worlds. In his work Harmonice Mundi (The Harmony of
the World), Kepler, like the Pythagoreans almost 2000 years earlier, tried to connect the
planetary mations with all fields of abstraction and harmony: geometrical figures, num-
bers, and musical harmonies. In this attempt he failed. But in the midst of all this work,
indicative of his yearnings and strivings, we find his final precious jewel, always cited
as Kepler's third law, the harmonic law. It was this law that gave us the sheets to the music
of the spheres.

We show how the third law can be derived from Newton’s laws of motion and the
inverse-square law of gravity. Starting with Equation 6.4.7b, Kepler’s second law

L

A== (6.6.1)
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we can relate the area of the orbit to its period and angular momentum per unit mass,
I'= L/m, by integrating the areal velocity over the entire orbital period

J:Adt = A=ér

6.6.2
. 24 ( )
l
The industrious student can easily prove that the area of an ellipse is wab. Thus, we have
(see Figure 6.5.1)
2 fi_ 2
r= 2mab _ oma vVl -e€ 663)
l l
or
2 4
= i’ll;-a —€?)
(6.6.4)
_amala s
1 a 2

On inserting the relation o= ml¥k (E quation 6.5.19) and the force constant k = GMm,
appropriate for planetary motion about the Sun (whose mass is M), into Equation 6.6.4,
we arrive at Kepler’s third law:
s _ 4m®
T =
GM, a (6.6.5)

—the square of a planet’s orbital period is proportional to the cube of its “distance” from
the Sun. The relevant “distance” is the semimajor axis @ of the elliptical orbit. In the case
of a circular orbit, this distance reduces to the radius.

The constant 47/GM, is the same for all objects in orbit about the Sun, regardless
of their mass.® If distances are measured in astronomical units (1 AU = 1.50 - 10° km) and
periods are expressed in Earth years, then 47°/GMy=1. Kepler’s third law then takes the
very simple form 7 =4 Listed in Table 6.6.1 are the periods and their squares, the semi-
major axes and their cubes, along with the eccentricities of all the planets.

(Note: Most of the planets have nearly circular orbits, with the exception
of Pluto, Mercury, and Mars.)

® Actually the Sun and a planet orbit their common center of mass (if only a two-body problem is being con-
sidered). A more accurate treatment of the orbital motion is carried out in Section 7.3 where it is shown that
a more correct value for this “constant” is given by 47%/G(M¢ +m), where m is the mass of the orbiting planet.
The correction is very small.
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TABLE 6.6.1

Period Semimajor Cube Ecceniricity
Square Axis

Planet T(yr) yr®) a(AU) a*(AU%) €

Mercury 0.241 0.0581 0.387 0.0580 0.206
Venus 0.615 0.378 0.723 0.378 0.007
Earth 1.000 1.000 1.000 1.000 0.017
Mars 1.881 3.538 1.524 3.540 0.093
Jupiter 11.86 140.7 5.203 140.8 0.048
Saturn 29.46 867.9 9.539 868.0 0.056
Uranus 84.01 7058. 19.18 7056. 0.047
Neptune 164.8 27160. 30.06 27160. 0.009
Pluto 247.7 61360. 39.440 61350. 0.249

EXAMPLE 6.6.1

Find the period of a comet whose semimajor axis is 4 AU.

Solution:

With 7 measured in years and @ in astronomical units, we have

7 =4"" years = 8 years
About 20 comets in the solar system have periods like this, whose aphelia lie close to
Jupiter’s orbit. They are known as Jupiter’s family of comets. They do not include Halley’s
Comet.

EXAMPLE 6.6.2

The altitude of a near circular, low earth orbit (LEQ) satellite is about 200 miles.
(a) Calculate the period of this satellite.

Solution:
For circular orbits, we have

GMgym _ o*  4n’R%1?
g —=Mm—=m—————
R R R

Solving for T
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which—no surprise—is Kepler’s third law for objects in orbit about the Earth.
Let R =R+ h where h is the altitude of the satellite above the Earth’s surface. Then

But GM/R: = g, so we have

R r ¥ R 3h
=291 —E[l+—] = o —E(1+—)
g Rg g 2Ry

Putting in numbers R = 6371 km, h = 322 km, we get T~ 90.8 min ~ 1.51 hr.

There is another way to do this if you realize that Kepler’s third law, being a deriv-
ative of Newton’s laws of motion and his law of gravitation, applies to any set of bodies
in orbit about another. The Moon orbits the Earth once every 27.3 clays4 at a radius
0f60.3 Rg. Thus, scaling Kepler’s third law to these values (1 month = 27.3 days and
1 lunar unit (LU) = 60.3 Rg), we have

7% (months) = R* (LU)

6693 1.051R,

Thus, for our LEO satellite R=—— Ry =1.051R; = =0.01743 LU
6371 60.3 R

E

7 (months) = R**[LU] = (0.01743)** months = 0.002301 months = 1.51 hr

(b) A geosynchronous satellite orbits the Earth in its equatorial plane with a period of
24 hr. Thus, it seems to hover above a fixed point on the ground (which is why you
can point your TV satellite receiver dish towards a fixed direction in the sky). What
is the radius of its orbit?

Solution:
Using Kepler’s third law again, we get

23
Ry, =7 = (5] =0.110 LU = 6.65R; = 42,400 km

Universality of Gravitation

A tremendous triumph of Newtonian physics ushered in the 19th century—Urbain Jean
Leverrier’s (1811-1877) discovery of Neptune. It signified a turning point in the history
of science, when the newly emerging methodology, long embroiled in a struggle with bib-
lical ideas, began to dominate world concepts. The episode started when Alexis Bouvard,
a farmer’s boy from the Alps, came to Paris to study science and there perceived
irregularities in the motion of Uranus that could not be accounted for by the attraction

“This is the sidereal month, or the time it takes the Moon to complete one orbit of 360 degrees relative to the
stars. The month that we are all familiar with is the synodic month of 29.5 days, which is the time it takes for
the Moon to go through all of its phases.
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of the other known planets. In the years to follow, as the irregularities in the motion of
Uranus mounted up, the opinion became fairly widespread among astronomers that
there had to be an unknown planet disturbing the motion of Uranus.

In 1842-1843 John Couch Adams (1819-1892), a gifted student at Cambridge,
began work on this problem, and by September of 1845 he presented Sir George Airy
(1801-1892), the Astronomer Royal, and James Challis, the director of the Cambridge
Observatory, the likely coordinates of the offending, but then unknown, planet. It seemed
impossible to them that a mere student, armed only with paper and pencil, could take
observations of Uranus, invoke the known laws of physics, and predict the existence and
precise location of an undiscovered planet. Besides, Airy had grave doubts concerning
the validity of the inverse square law of gravity. In fact, he believed that the law of grav-
ity fell off faster than inverse square at great distances. Thus, somewhat understandably,
Airy was reluctant to place much credence in Adams’ work, and so the two great men chose
to ignore him, sealing forever their fate as the astronomers who failed to discover Neptune.

It was about this time that Leverrier began work on the problem. By 1846, he had cal-
culated the orbit of the unknown planet and made a precise prediction of its position on
the celestial sphere. Airy and Challis saw that Leverrier’s result miraculously agreed with
the prediction of Adams. Challis immediately initiated a search for the unknown planet in
the suspicious sector of the sky, but owing to Cambridge’s lack of detailed star maps in that
area, the search was laboriously painstaking and the data reduction problem prodigious.
Had Challis proceeded with vigor and tenacity, he most assuredly would have found
Neptune, for it was there on his photographic plates. Unfortunately, he dragged his feet.
By this time, however, an impatient Leverrier had written Johann Galle (1812-1910),
astronomer at the Berlin Observatory, asking him to use their large refractor to examine
the stars in the suspect area to see if one showed a disc, a sure signature of a planet. A short
time before the arrival of Leverrier’s letter containing this request, the Berlin Observatory
had received a detailed star map of this sector of the sky from the Berlin Academy. On
receipt of Leverriers letter, September 23, 1846, the map was compared with an image of
the sky taken that night, and the planet was identified as a foreign star of eighth magni-
tude, not seen on the star map. It was named Neptune. Newtonian physics had triumphed
in a way never seen before—laws of physics had been used to make a verifiable predic-
tion to the world at large, an unexpected demonstration of the power of science.

Since that time, celestial objects observed at increasingly remote distances continue
to exhibit behavior consistent with the laws of Newtonian physics (ignoring those special
cases involving large gravitational fields or very extreme distances, each requiring treat-
ment with general relativity). The behavior of binary star systems within our galaxy serves
as a classic example. Such stars are bound together gravitationally, and their orbital dynam-
ics are well described by Newtonian mechanics. We discuss them in the next chapter. So
strongly do we believe in the universality of gravitation and the laws of physics, that appar-
ent violations by celestial objects, as in the case of Uranus and the subsequent discovery
of Neptune, are usually greeted by searches for unseen disturbances. Rarely do we instead
demand the overthrow of the laws of physics. (Although, astonishingly enough, two famous
examples discussed subsequently in this chapter had precisely this effect and helped rev-
olutionize physics.)

The more likely scenario, ferreting out the unseen disturbance, is currently in
progress in many areas of contemporary astronomical research, as illustrated by the
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search for dark matter in the universe. One of the reasons we think that an enormous
amount of unseen matter fills the universe (perhaps 10 times as much as is visible) can
be gleaned from the dynamics of spiral galaxies—thin disc-shaped, rotating aggregates
of as many as 100 billion stars. At first sight the rotation curve for spiral galaxies (a plot
of the rotational velocity of the stars as a function of their radial distance from the
galactic center) seems to violate Kepler’s laws. An example of such a curve is shown in
Figure 6.6.1. Most of the luminous matter of a spiral galaxy is contained in its central
nucleus whose extent is on the order of several thousand light years in radius. The rest
of the luminous matter is in the spiral arms that extend in radius out to a distance of
about 50,000 light years. The whole thing slowly rotates about its center of gravity,
exactly as one would expect for a self-gravitating conglomerate of stars, gas, dust, and
so on. The surprising thing about the rotation curve in Figure 6.6.1 is that it is appar-
ently non-Keplerian.

We can illustrate what we mean by this with a simple example. Assume that the
entire galactic mass is concentrated within a nucleus of radius R and that stars fill the
nucleus at uniform density. This is an oversimplification, but a calculation based on such
a model should serve as a guide for what we might expect a rotation curve to look like.
The rotational velocity of stars at some radius < R within the nucleus is determined only
by the amount of mass M within the radius r. Stars external to r have no effect. Because
the density of stars within the total nuclear radius R is constant, we calculate M as

M= énrpr3 (6.6.6)
where
p= f_j\;ﬁ (6.6.7)
3
and from Newton’s second law
GMm _ mo® (6.6.8)
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for the gravitational force exerted on a star of mass m at a distance r from the center of
the nucleus by the mass M interior to that distance r. Solving for v, we get

v= 1[(;Mga,/ﬂ3 r 6.6.9)

or, the rotational velocity of stars at r < R is proportional to r. For stars in the spiral arms
at distances r > R, we obtain
GMm — mp®

& (6.6.10)
r r

GM
o= ,’~—r—gi (6.6.11)

or, the rotational velocity of stars at r > R is proportional to 1/r . This is what we mean
by Keplerian rotation. It is the way the velocities of planets depend on their distance from
the Sun. We show such a curve in Figure 6.6.1, where we have assumed that the entire
mass of the galaxy is uniformly distributed in a sphere whose radius is 1 kpe [1 parsec (pc) =
3.26 light years (ly)].

Let us examine the measured rotation curve. Initially, it climbs rapidly from zero
at the galactic center to about 250 km/s at 1 kpc, more or less as expected, but the aston-
ishing thing is that the curve does not fall off in the expected Keplerian manner. It stays
more or less flat all the way out to the edges of the spiral arms (the zero on the verti-
cal axis has been suppressed so the curve is flatter than it appears to be). The conclu-
sion is inescapable. As we move away from the galactic center, we must “pick up”
more and more matter within any given radius, which causes even the most remote
objects in the galaxy to orbit at velocities that exceed those expected for a highly cen-
tralized matter distribution. Because most of the luminosity of a galaxy comes from
its nucleus, we conclude that dark, unseen matter must permeate spiral galaxies all the
way out to their very edges and beyond. (In fact it should be a simple matter to deduce
the radial distribution of dark matter required to generate this flat rotation curve.) Of
course, Newton’s laws could be wrong, but we think not. It looks like a case of Neptune
revisited.

thus,

6.7| Potential Energy in a Gravitational Field:
Gravitational Potential

In Example 2.3.2 we showed that the inverse-square law of force leads to an inverse first
power law for the potential energy function. In this section we derive this same relation-
ship in a more physical way.

Let us consider the work W required to move a test particle of mass m along some
prescribed path in the gravitational field of another particle of mass M.

We place the particle of mass M at the origin of our coordinate system, as shown in
Figure 6.7.1a. Because the force F on the test particle is given by F = —(GMm/r®)e,, then
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Figure 6.7.1 Diagram for finding the work M
required to move a test particle in a gravitational
field. ®

to overcome this force an external force —F must be applied. The work dW done in
moving the test particle through a displacement dr is, thus, given by

aw =-F-dr=M" o oy 6.7.0)
r

Now we can resolve dr into two components: e, dr parallel to e, (the radial component)

and the other at right angles to e, (Figure 6.7.1b). Clearly,

e, dr=dr 6.7.2)
and so W is given by
2 df‘ 1 1

where r; and r, are the radial distances of the particle at the beginning and end of the
path. Thus, the work is independent of the particular path taken; it depends only on the
endpoints. This verifies a fact we already knew, namely that a central force described by
an inverse-square law is conservative.
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We can, thus, define the potential energy of a test particle of mass m at a given point
in the gravitational field of another particle of mass M as the work done in moving the
test particle from some arbitrary reference position r; to the position r,. We take the ref-
erence position to be r; = eo. This assignment is usually a convenient one, because the grav-
itational force between two particles vanishes when they are separated by eo. Thus, putting
r;=e and ry = r in Equation 6.7.3, we have

GMm
r

V(r)=GMm|[ d_; =- (6.7.4)
o r

Like the gravitational force, the gravitational potential energy of two particles separated

by e also vanishes. Note that for finite separations, the gravitational potential energy is

negative.

Both the gravitational force and potential energy between two particles involve the
concept of action at a distance. Newton himself was never able to explain or describe the
mechanism by which such a force worked. We do not attempt to either, but we would
like to introduce the concept of field in such a way that forces and potential energies can
be thought of as being generated not by actions at a distance but by local actions of matter
with an existing field. To do this, we introduce the quantity ®, called the gravitational
potential

® = lim (K) (6.7.5)
m

In essence  is the gravitational potential energy per unit mass that a very small test particle
would have in the presence of other surrounding masses. We take the limit as m — 0 to ensure
that the presence of the test particle does not affect the distribution of the other matter
and change the thing we are trying to define. Clearly, the potential should depend only
on the magnitude of the other masses and their positions in space, not those of the par-
ticle we are using to test for the presence of gravitation. We can think of the potential as
a scalar function of spatial coordinates, ®(x, y, z), or a field, set up by all the other sur-
rounding masses. We test for its presence by placing the test mass m at any point (x,y, 2). The
potential energy of that test particle is then given by

V(x,y,z) = m®P(x,y,z) (6.7.6)

We can think of this potential energy as being generated by the local interaction of the
mass m and the field ® that is present at the point (x, y, z).
The gravitational potential at a distance r from a particle of mass M is

o-_CM ©6.7.7)
r
If we have a number of particles My, My, .. ., M,, .. . located at positions ry, rp, . . ., 13, . . .,

then the gravitational potential at the point r(x, y, z) is the sum of the gravitational poten-
tials of all the particles, that is,

0(xy0) = Y0, =3 2 6.78)
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in which s, is the distance of the field point r(x, y, ) from the position r(x;, ;, z;) of the
ith particle

s =|r—r (6.7.9)

We define a vector field g, called the gravitational field intensity, in a way that is com-
pletely analogous to the preceding definition of the gravitational potential scalar field

g=lim (E) (6.7.10)
m—->0\ m

Thus, the gravitational field intensity is the gravitational force per unit mass acting on a

test particle of mass m positioned at the point (x, y, z). Clearly, if the test particle expe-

riences a gravitational force given by

F=mg (6.7.11)

then we know that other nearby masses are responsible for the presence of the local field
intensity g.5

The relationship between field intensity and the potential is the same as that between
the force F and the potential energy V, namely

g=-Vo (6.7.122)
F=-VV (6.7.12b)

The gravitational field intensity can be calculated by first finding the potential function
from Equation 6.7.8 and then calculating the gradient. This method is usually simpler than
the method of calculating the field directly from the inverse-square law. The reason is that
the potential energy is a scalar sum, whereas the field intensity is given by a vector sum.
The situation is analogous to the theory of electrostatic fields. In fact one can apply any
of the corresponding results from electrostatics to find gravitational fields and potentials
with the proviso, of course, that there are no negative masses analogous to negative charge.

EXAMPLE 6.7.1

Potential of a Uniform Spherical Shell

As an example, let us find the potential function for a uniform spherical shell.

Solution:

By using the same notation as that of Figure 6.2.1, we have

_Gjﬂ=_G12ﬂpR2 :in@ de

q):

®g is the local acceleration of a mass m due to gravity. On the surface of Earth, its value is 9.8 m/s® and is
primarily due to the mass of the Earth.
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From the relation between s and 6 that we used in Equation 6.2.5, we find that the pre-
ceding equation may be simplified to read

rR -R r

where M is the mass of the shell. This is the same potential function as that of a single
particle of mass M located at O. Hence, the gravitational field outside the shell is the
same as if the entire mass were concentrated at the center. It is left as a problem to show
that, with an appropriate change of the integral and its limits, the potential inside the
shell is constant and, hence, that the field there is zero.

27 pR*® JﬁRds _GM

o=-G (6.7.13)

Potential and Field of a Thin Ring

We now wish to find the potential function and the gravitational field intensity in the
plane of a thin circular ring,
Solution:

Let the ring be of radius R and mass M. Then, for an exterior point lying in the plane
of the ring, Figure 6.7.2, we have

®= -do—i"— =" “dee

where g is the linear mass density of the ring. To evaluate the integral, we first express
s as a function of 8 using the law of cosines

s*=R*+7" - 2Rr cos O

Figure 6.7.2 Coordinates for
calculating the gravitational field of
aring.
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The integral becomes
n do
® =-2RuG
K IO (r®> + R% - 2Rr cos 6)"2
__ 2RuG § do

r % [1+®R%r®)—2RIr) cos0)]'?

First, let us use the so-called far field approximation r > R and expand the integrand in
a power series of x (= R/r), making certain to keep all terms of order 2

q>=—2xucj:[(1—;x2 +xc056) +2(x® ~2x cos0)® + - ] do
=—2x/.tGJZ(1—%x2 +xcosO+%x2 cosze—%x3 cose+%x4 +-- -)dB

Now, dropping all terms of order x* or higher and noting that the term containing cos 8
has zero integral over a half cycle, we obtain

X2
D =2xuG 7L’+7L’Z+~ .

2
1+R_2+. .o
4r

_ —27nRuG [

r

__GM(, R
r

The field intensity at a distance r from the center of the ring is in the radial direction

(because @ is not a function of 8) and is given by

_a®  GM(, 3(RY
g——ger——r—2 1+T— +--le,

r

The field is not given by an inverse-square law. If r > R, the term in parentheses
approaches unity, and the field intensity approaches the inverse-square field of a single
particle of mass M. This is true for a finite-sized body of any shape; that is, for distances
large compared with the linear dimensions of the body, the field intensity approaches
that of a single particle of mass M.

The potential for a point near the center of the ring can be found by invoking the near
field, or r <R, approximation. The solution proceeds more or less as before, but in this
case we expand the preceding integrand in powers of r/R to obtain

2
Q:_% 1+r_2+...
R 4R

g can again be found by differentiation

_(G_M,)e e
g_ 233 r
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Thus, a ring of matter exerts an approximately linear repulsive force, directed away from
the center, on a particle located somewhere near the center of the ring. It is easy to see that
this must be so. Imagine that you are a small mass at the center of such a ring of radius R
with a field of view both in front of you and behind you that subtends some definite angle.
If you move slowly a distance r away from the center, the matter you see attracting you in
the forward direction diminishes by a factor of r, whereas the matter you see attracting you
from behind grows by r. But because the force of gravity from any material element falls
as 1/r”, the force exerted on you by the forward mass and the backward mass varies as 1/r,
and, thus, the force difference between the two of them is [1/(R - r) - 1/(R + r)] or pro-
portional to r for r < R. The gravitational force of the ring repels objects from its center.

6.8 | Potential Energy in a General Central Field

We showed previously that a central field of the inverse-square type is conservative. Let
us now consider the question of whether or not any (isotropic) central field of force is con-
servative. A general isotropic central field can be expressed in the following way:

F=f(re, 6.8.1)

in which e, is the unit radial vector. To apply the test for conservativeness, we calculate
the curl of F. It is convenient here to employ spherical coordinates for which the curl is
given in Appendix F. We find

egr e,rsinf

ef'
1 (3 a2 2

VXF= il =
Zsnblor 20 ¢ ©8.2)
F, rF; rF,sin@
For our central force F, =f(r), Fg =0, and F,= 0. The curl then reduces to
vxF=—S ¥ _%¥_, 6.8.3)

rsin@d¢ r 00

The two partial derivatives both vanish because f(r) does not depend on the angular
coordinates ¢ and 6. Thus, the curl vanishes, and so the general central field defined by
Equation 6.8.1 is conservative. We recall that the same test was applied to the inverse-
square field in Example 4.2.5.

We can now define a potential energy function

V== Fede==[ ferdr (6.84)

where the lower limit 7., is the reference value of r at which the potential energy is
defined to be zero. For inverse-power type forces, r,,s is often taken to be at infinity. This
allows us to calculate the potential energy function, given the force function. Conversely,
if we know the potential energy function, we have

av(r)
dr

fry=- (6.8.5)

giving the force function for a central field.
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6.9| Energy Equation of an Orbit
in a Central Field

The square of the speed is given in polar coordinates from Equation 1.11.7
v.v=0 =2 +r%9? (6.9.1)
Because a central force is conservative, the total energy T + V is constant and is given by

%m(f’z +r%0*)+ V(r) = E = constant (6.9.2)

We can also write Equation 6.9.2 in terms of the variable u = 1/r. From Equations 6.5.7 and
6.5.8 we obtain

2
%WJ{(%) + u2]+ V™) =E (6.9.3)

The preceding equation is called the energy equation of the orbit.

EXAMPLE 6.9.1
In Example 6.5.1 we had for the spiral orbit r = c6”

w2
de ¢

0—3 - _201/21[3/2
so the energy equation of the orbit is

sml*(4cu’ +u*)+V =E
Thus,

V(r)= E—%mlz(%+ ig)

r

This readily gives the force function of Example 6.5.1, because f(r) = ~dV/dr.

6.10| Orbital Energies in an Inverse-Square Field

The potential energy function for an inverse-square force field is
k
V(r)=——=—ku (6.10.1)
r

so the energy equation of the orbit (Equation 6.9.3) becomes

2
;w{[%} + u2j|—ku =E (6.102)



252 CHAPTER 6 Gravitation and Central Forces

Solving for du/d@, we first get
(du JZ s, 2E %u
+ U =— —

d_e‘ 'l + il (6.10.3a)
and then
2E
% “VoEt % -u® (6.10.3b)
Separating variables yields
du
dg=—--
2E oku_ (6.10.30)
ml®>  mi®
We introduce three constants, @, b, and ¢
a=-1 b= ;—fl-]sz— c= .7;’2—11?5 (6.10.4)

to write Equation 6.10.3c in a standard form to carry out its integration

0-0, =J‘d—“=._1__cos-l[__ﬁ.2£“_) 6.105
° vau® +bu+c V-a Vb% —dac (6.10.5)

where 6, is a constant of integration. Rewriting Equation 6.10.5 first gives us

b+2au
2= = cos|[v-a(0-9,) 6.10.6
vb? -4dac [ ° ] ( &
and then solving for u
2 ——
u= 4\”’24“0 cos|+"a (9_90)]+J;; (6.10.6b)
— a a—

Now we replace u with 1/r and insert the values for the constants a, b, and ¢ from Equation 6.10.4
into Equation 6.10.6b.

1 4k>  8E k
;:.12. W'{'W cos(0—90)+m (61073)
and factoring out the quantity k/ml” yields
2
%: %[ 1+—2’i’;‘l cos(0—90)+1j| (6.10.7b)

which, upon simplifying, yields the polar equation of the orbit analogous to
Equation 6.5.18a,

_ ml*/k
1+ /1+2EmI%/k® cos(0 - 0,)

r (6.10.7¢)
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If, as before, we set 8, = 0, which defines the direction toward the orbital pericenter to
be the reference direction for measuring polar angles, and we compare Equation 6.10.7c
with 6.5.18b, we see that again it represents a conic section whose eccentricity is

2E ml*
k k
From Equations 6.5.18a, b and 6.5.19, a=ml’/k = (1 - €’)a and on inserting these rela-

tions into Equation 6.10.8, we see that

e= 1+ (6.10.8)

2
_2E_1-€¢ 1 (6.10.9)
k o a
or
k
E=-— (6.10.10)
2a

Thus, the total energy of the particle determines the semimajor axis of its orbit. We now
see from Equation 6.10.8, as stated in Section 6.5, that the total energy E of the particle
completely determines the particular conic section that describes the orbit:

E<0 €<l closed orbits (ellipse or circle)
E=0 e=1 parabolic orbit
E>0 €e>1 hyperbolic orbit

Because E = T + V and is constant, the closed orbits are those for which T < |V|, and the
open orbits are those for which T >|V/|.

In the Sun’ gravitational field the force constant k = GMom, where M, is the mass
of the Sun and m is the mass of the body. The total energy is then

mo” _GMym

= E = constant (6.10.11)
2 r

so the orbit is an ellipse, a parabola, or a hyperbola depending on whether o’ is less than,
equal to, or greater than the quantity 2GMq/r, respectively.

EXAMPLE 6.10.1

A comet is observed to have a speed v when it is a distance r from the Sun, and its direc-
tion of motion makes an angle ¢ with the radius vector from the Sun, Figure 6.10.1. Find
the eccentricity of the comet’s orbit.

Solution:

To use the formula for the eccentricity (Equation 6.10.8), we need the square of the angu-
lar momentum constant [. It is given by

I*=|r x v’ = (rv sing)®
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Figure 6.10.1 Orbit of a comet.

The eccentricity, therefore, has the value

_ 912
- 1+(02 _ 2GMO) rvsin ¢
r GM,,
Note that the mass m of the comet cancels out. Now the product GM, can be expressed
in terms of Earth’s speed v, and orbital radius @, (assuming a circular orbit), namely

2
GMy, =a,v,

The preceding expression for the eccentricity then becomes
9 vz
€= {1 + (VZ - E)(RV sin¢)2]

where we have introduced the dimensionless ratios

which simplify the computation of €.
As a numerical example, let v be one-half the Earth’s speed, let r be four times
Earth—Sun distance, and ¢ = 30°. Then V = 0.5 and R = 4, so the eccentricity is

e=[1+(0.25 - 0.5)(4 x 0.5 x 0.5)*]"* = (0.75)"* = 0.866

For an ellipse the quantity (1 — %) is equal to the ratio of the major (long) axis to the

minor (short) axis. For the orbit of the comet in this example this ratio is (1 - 0.75) =29,
or 2:1, as shown in Figure 6.10.1.

EXAMPLE 6.10.2

When a spacecraft is placed into geosynchronous orbit (Example 6.6.2), it is first
launched, along with a propulsion stage, into a near circular, low earth orbit (LEO) using
an appropriate booster rocket. Then the propulsion stage is fired and the spacecraft is
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Figure 6.10.2 Boosting a satellite
from low earth orbit (LEO) to a
geosynchronous (geo) orbit.

transferred to an elliptic orbit designed to take it to geosynchronous altitude at orbital
apogee (see Figure 6.10.2). At apogee, the propulsion stage is fired again to take it out
of its elliptical orbit and put it into a circular, geocentric (geo) orbit. Thus, two velocity
boosts are required of the propulsion stage: (a) Av;, to move the satellite from its cir-
cular LEO into the elliptical transfer orbit and (b) Av,, to circularize the orbit of the satel-
lite at the geosynchronous altitude. Calculate the required velocity boosts, Av; and Av,.

(a) Solution:

We essentially solved this problem in Example 6.5.4. We do it here in a slightly dif-
ferent way. First, we note that the radii of the two circular orbits and the semimajor
axis of the transfer elliptical orbit (see Figure 6.10.2) are related

RLEO + Rgeo =2a

From the figure we see that Ry o =a(1 - €) and R, = a(1 + ¢€) are the perigee and
apogee distances of the transfer orbit.

Now, we use the energy equation (6.10.11) to calculate the velocity at perigee,
Ops of the spacecraft, after boost to the transfer elliptical orbit. The energy of the ellip-
tical orbit is
_ 2 _ GM Em

%a 2% a(l-¢)

Solving for v, gives

2 GME(I'I-E)
v =—25&| —
P a \l-¢

Substituting for @, 1 + € and 1 - € into the above gives

R
2= 2GM; ( ge,,)

2=
Ripo+ Ry, \ Riro
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Now, we can calculate the velocity of the satellite in circular LEO from the condition

2
mop, _ GMypm

2
Rizo Riro
or
s _ GMg
Vreo = R
LEO

After a little algebra, we find that the required velocity boost is

2R
Avy =0, — 00 = GMy |
Ripo | Bieo tRgeo

Remembering that g = GM/R7 we have

g 2Ry,
Av, =R, -1
Ripo | {Rieo + Ry

Putting in numbers: Rg = 6371 km, R 5o = 6693 km, R, = 42,400 km we get
Av, = 8,600 km/hr

(b) Solution:
The energy of the spacecraft at apogee is

_GMym _ 1,2 _GMgm

E= 1 mo?
2a 2 a(l+e)

Solving for the velocity at apogee, v,

of = GM, (l—e)
¢ a \l+e

Substituting for @, 1 + € and 1 — € into the above gives

02 = 2GM E BLEO
¢ RLEO +Bgeo R

geo

As before, the condition for a circular orbit at this radius is

2
mog,  GMym

Bgea Rgzeo
Thus,
GM
DZeo = B E

Avy =0, -0, = GM, 1- 2Rip0  |_ R, € |1- 2R, 5o
e0 a
4 Rgeo RLEO + Rgeo R RLEO + Rgeo
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Putting in numbers, we get
Avy = 5269 km/hr

Note, the total boost, Av; + Av, = 8,600 km/hr + 5269 km/hr = 13,869 km/hr,
required of the spacecraft propulsion system to place it into geo orbit is almost 50%
of the boost required by the launcher to place it into LEO!

6.11| Limits of the Radial Motion:
Effective Potential
We have seen that the angular momentum of a particle moving in any isotropic central

field is a constant of the motion, as expressed by Equations 6.5.4 and 6.5.5 defining [. This
fact allows us to write the general energy equation (Equation 6.9.2) in the following form:

%['2+£—ZJ+V(r)=E (6.11.1a)
or
%rz +U(r)=E (6.11.1b)
in which
U(r) = %;- +V(r) (6.11.1c)

The function U(r) defined here is called the effective potential. The term ml%/2r® is
called the centrifugal potential. Looking at Equation 6.11.1b we see that, as far as the
radial motion is concerned, the particle behaves in exactly the same way as a particle of
mass m moving in one-dimensional motion under a potential energy function U(r). As
in Section 3.3 in which we discussed harmonic motion, the limits of the radial motion
(turning points) are given by setting # = 0 in Equation 6.11.1b. These limits are, there-
fore, the roots of the equation

Ur)-E=0 (6.11.2a)

or

2

-’-’-‘lg +V(r)-E=0 (6.11.2b)
2r

Furthermore, the allowed values of r are those for which U(r) < E, because #” is neces-

sarily positive or zero.

Thus, it is possible to determine the range of the radial motion without knowing any-
thing about the orbit. A plot of U(r) is shown in Figure 6.11.1. Also shown are the radial
limits 7, and ry for a particular value of the total energy E. The graph is drawn for the
inverse-square law, namely,

ml® k
== 6.11.3
U(r) o ( )



258 CHAPTER 6 Gravitation and Central Forces

Figure 6.11.1 The effective potential for the inverse-square law of force and limits of the
radial motion.

In this case Equation 6.11.2a, on rearranging terms, becomes

—2Er® - 2kr +mi*=0 (6.11.4)
which is a quadratic equation in . The two roots are
(12 2\1/2
rg=FEEH 22;3"1’ ) 6.115)

giving the maximum (upper sign) and minimum (lower sign) values of the radial distance
r under the inverse-square law of force.

When E <0, the orbits are bound, the two roots are both positive, and the resulting
orbit is an ellipse in which r, and r; are the pericenter and apocenter, respectively. When
the energy is equal to its minimum possible value

K2
Epg=~5 = (6.11.6)
Equation 6.11.5 then has a single root given by
k
™="gp (6.11.7)

and the orbit is a circle. Note, that this result can also be obtained from Equation 6.10.10
(¢ =-k/2E) because ry=a in the case of a circular orbit. When E >0, Equation 6.11.5 has
only a single, positive real root corresponding to a parabola (E = 0) or a hyperbola (E > 0).

Because the effective potential of the particle is axially symmetric, its shape in two
dimensions can be formed by rotating the curve in Figure 6.11.1 about the vertical
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Figure 6.11.2 (a) The [F.S .
effective potential for the 2 Ein<E < 0, ellipse
inverse-square law of force E DT s
in two dimensions. (b) The € --
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(Energy) axis. The resulting two-dimensional shape is shown in Figure 6.11.2a. The orbit
of the particle can be visualized as taking place in that figure, constrained to a horizontal
plane of constant energy E. If the energy of the particle is E < 0, the intersection of the
plane and the effective potential surface forms an inner circle of radius r, that marks a
central, impenetrable centrifugal barrier and an outer circle of radius ry, that marks the
farthest point of escape from the center of attraction. The motion of the particle is bound
to a region between these two limits. If the energy of the particle is equal to its minimum
possible value E = E, ., these two circles converge to a single one that traces out the min-
imum of the effective potential surface. The particle is constrained to that circle. If the
energy of the particle is E > 0, the intersection forms only a single circle of radius r, around
the centrifugal barrier and the particle is only inhibited from passing into that region; oth-
erwise, it is free to escape to infinity along either a parabolic or hyperbolic trajectory.

Figure 6.11.2b suppresses the display of the effective potential mesh in Figure 6.11.2a
(except for the two radial curves in the *x direction) and shows the circular, elliptical,
and hyperbolic orbits that result when the energy (in appropriately scaled units) is equal
to—1, —%, and +1 units, respectively. Note that, in all cases, the particle is constrained to
move in a region of its plane of constant energy, in which the value of its energy exceeds
the value of the effective potential at that point.
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EXAMPLE 6.11.1

Find the semimajor axis of the orbit of the comet of Example 6.10.1.

Solution:

Equation 6.10.10 gives directly

a—L— GMgm
—2E ) mv’  GMgm
2 r

where m is the mass of the comet. Clearly, m again cancels out. Also, as stated previ-
ously, GMg = a,v?. So the final result is the simple expression

a

= 2R -V?

where R and V are as defined in Example 6.10.1.
For the previous numerical values, R =4 and V = 0.5, we find ¢ = 4,/[0.5 — (0.5)] = 4a,.

Examples 6.10.1 and 6.10.2 bring out an important fact, namely, that the orbital
parameters are independent of the mass of a body. Given the same initial position, speed,
and direction of motion, a grain of sand, a coasting spaceship, or a comet would all have
identical orbits, provided that no other bodies came near enough to have an effect on the
motion of the body. (We also assume, of course, that the mass of the body in question is
small compared with the Sun’s mass.)

6.12| Nearly Circular Orbits in
Central Fields: Stability

A circular orbit is possible under any attractive central force, but not all central forces
result in stable circular orbits. We wish to investigate the following question: If a par-
ticle traveling in a circular orbit suffers a slight disturbance, does the ensuing orbit
remain close to the original circular path? To answer the query, we refer to the radial
differential equation of motion (Equation 6.5.2a). Because & = I/r”, we can write the
radial equation as follows:

2
mi = —"r%— +fr) (6.12.1)

[This is the same as the differential equation for one-dimensional motion under the effec-
tive potential U(r) = (mI¥2r%) + V(r), so that mi* = —dU@)/dr = ml*®) — dV(r)/dr.]

Now for a circular orbit, r is constant, and # = 0. Thus, calling a the radius of the cir-
cular orbit, we have

2
_’Zl_s - f(a) (6.12.2)
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for the force at r = a. It is convenient to express the radial motion in terms of the vari-
able x defined by

x=r-a (6.12.3)
The differential equation for radial motion then becomes
mi=ml(x+a) +f(x+a) (6.12.4)

Expanding the two terms involving x + a as power series in x, we obtain
mi = mlza‘s(l—S£ +) +[f(@)+ f(@x+-] (6.12.5)
a

Equation 6.12.5, by virtue of the relation shown in Equation 6.12.2, reduces to
L |3 ,
mi + [7 fla-f (a)]x =0 (6.12.6)

if we ignore terms involving x* and higher powers of x. Now, if the coefficient of x (the
quantity in brackets) in Equation 6.12.6 is positive, then the equation is the same as that
of the simple harmonic oscillator. In this case the particle, if perturbed, oscillates har-
monically about the circle r =g, so the circular orbit is a stable one. On the other hand,
if the coefficient of x is negative, the motion is nonoscillatory, and the result is that x even-
tually increases exponentially with time; the orbit is unstable. (If the coefficient of x is zero,
then higher terms in the expansion must be included to determine the stability.) Hence,
we can state that a circular orbit of radius a is stable if the force function f(r) satisfies the
inequality

f(a) +§ f(a)<0 (6.12.7)
For example, if the radial force function is a power law, namely,
fry=-c" (6.12.8)
then the condition for stability reads
n a n=1
-ca” — gcna <0 (6.12.9)
which reduces to
n>-3 (6.12.10)

Thus, the inverse-square law (n = —2) gives stable circular orbits, as does the law of direct
distance (n = 1). The latter case is that of the two-dimensional isotropic harmonic oscil-
lator. For the inverse—fourth power (n = —4) circular orbits are unstable. Tt can be shown
that circular orbits are also unstable for the inverse-cube law of force (n = -3). To show
this it is necessary to include terms of higher power than 1 in the radial equation. (See
Problem 6.26.)
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6.13| Apsides and Apsidal Angles
for Nearly Circular Orbits

An apsis, or apse, is a point in an orbit at which the radius vector assumes an extreme value
(maximum or minimum). The perihelion and aphelion points are the apsides of planetary orbits.
The angle swept out by the radius vector between two consecutive apsides is called the apsi-
dal angle. Thus, the apsidal angle is 7 for elliptic orbits under the inverse-square law of force.

In the case of motion in a nearly circular oribt, we have seen that r oscillates about
the circle r = g (if the orbit is stable). From Equation 6.12.6 it follows that the period 7,
of this oscillation is given by

/2
T, =91 —— (6.13.1)
-(8/a)f(a)- f'(a)

The apsidal angle in this case is just the amount by which the polar angle fincreases during
the time thatr osci]la.tes froma minimum value to the succeeding maximum value. This time
is clearly 7,/2. Now @ =1/r’; therefore, 6 remains approximately constant, and we can write

r 12
o=t - _M} (613.9)
a

ma

The last step in Equation 6.13.2 follows from Equation 6.12.2; hence, the apsidal angle
is given by

@ -2
=2 10=r|3+al
V=g 3+ (6.13.3)
Thus, for the power law of force f(r) = —r", we obtain
y=n@+n)™" (6.13.4)

The apsidal angle is independent of the size of the orbit in this case. The orbit is reentrant,
or repetitive, in the case of the inverse-square law (n = —2) for which ¥ = 7 and in the
case of the linear law (n = 1) for which y= /2. If, however, sayn =2, then y= /N5, which
is an irrational multiple of 7, and so the motion does not repeat itself.

If the law of force departs slightly from the inverse-square law, then the apsides
either advances or regresses steadily, depending on whether the apsidal angle is slightly
greater or slightly less than 7. (See Figure 6.13.1.)

Apsidal angle

Tmin

Figure 6.13.1 Illustrating the apsidal angle.
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EXAMPLE 6.13.1

Let us assume that the gravitational force field acting on the planet Mercury takes the
form

f(r)=—iz+er
r

where eis very small. The first term is the gravitational field due to the Sun, and the second
term is a repulsive perturbation due to a surrounding ring of matter. We assume
this matter distribution as a simple model to represent the gravitational effects of all the
other planets, primarily Jupiter. The perturbation is linear for points near the Sun and
in the plane of the surrounding ring, as previously explained in Example 6.7.2. The
apsidal angle, from Equation 6.13.3, is

2ka+€ .
—ka™* +ea

1-4ked® e € 3\ € 3\
1Tk €d = _f 1-4£
n[ 1-ked® ) 7:(1 P ) ( 4ka )

‘P=7r[3+a

In the last step, we used the binomial expansion theorem to expand the terms in brack-
ets in powers of e/k and kept only the first-order term. The apsidal angle advances if €
is positive and regresses if it is negative.

By 1877, Urbain Leverrier, using perturbation methods, had succeeded in calculating
the gravitational effects of all the known planets on one another’s orbit. Depending on the
planet, the apsidal angles were found to advance or regress in good agreement with theory
with the sole exception of the planet Mercury. Observations of Mercury’s solar transits
since 1631 indicated an advance of the perihelion of its orbit by 565” of arc per century.
According to Leverrier, it should advance only 527" per century, a discrepancy of 38”.
Simon Newcomb (1835-1909), chief of the office for the American Nautical Almanac,
improved Leverrier’s calculations, and by the beginning of the 20th century, the accepted
values for the advance of Mercury’s perihelion per century were 575” and 534”, respectively,
or a discrepancy of 41” + 2" of arc. Leverrier himself had decided that the discrepancy
was real and that it could be accounted for by an as yet unseen planet with a diameter
of about 1000 miles circling the Sun within Mercury’s orbit at a distance of about 0.2 AU.
(You can easily extend the preceding example to show that an interior planet would lead
to an advance in the perihelion of Mercury’s orbit by the factor 8/ka’) Leverrier called
the unseen planet Vulcan. No such planet was found.

Another possible explanation was put forward by Asaph Hall (1829-1907), the dis-
coverer of the satellites of Mars in 1877. He proposed that the exponent in Newton’s law
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of gravitation might not be exactly 2, that instead, it might be 2.0000001612 and that this
would do the trick. Einstein was to comment that the discrepancy in Mercury’s orbit “could
be explained by means of classic mechanics only on the assumption of hypotheses which
have little probability and which were devised solely for this purpose.” The discrepancy,
of course, was nicely explained by Einstein himself in a paper presented to the Berlin
Academy in 1915. The paper was based on Einstein’s calculations of general relativity even
before he had fully completed the theory. Thus, here we have the highly remarkable
event of a discrepancy between observation and existing theory leading to the confirma-
tion of an entirely new superceding theory.

If the Sun were oblate (football-shaped) enough, its gravitational field would
depart slightly from an inverse-square law, and the perihelion of Mercury’s orbit would
advance. Measurements to date have failed to validate this hypothesis as a possible
explanation. Similar effects, however, have been observed in the case of artificial satellites
in orbit about Earth. Not only does the perihelion of a satellite’s orbit advance, but the
plane of the orbit precesses if the satellite is not in Earth’s equatorial plane. Detailed
analysis of these orbits shows that Earth is basically “pear-shaped and somewhat
lumpy.”

6.14| Motion in an Inverse-Square Repulsive
Field: Scattering of Alpha Particles

Ironically one of the crowning achievements of Newtonian mechanics contained its own
seeds of destruction. In 1911, Ernest Rutherford (1871-1937), attempting to solve the
problem of the scattering of alpha particles by thin metal foils, went for help back
to the very source of classical mechanics, the Principia of Sir Isaac Newton.
Paradoxically, in the process of finding a solution to the problem based on classical
mechanics, the idea of the nuclear atom was born, an idea that would forever remain
incomprehensible within the confines of the classic paradigm. A complete, self-
consistent theory of the nuclear atom would emerge only when many of the notions
of Newtonian mechanics were given up and replaced by the novel and astounding
concepts of quantum mechanics. It is not that Newtonian mechanics was “wrong”; its
concepts, which worked so well time and again when applied to the macroscopic world
of falling balls and orbiting planets, simply broke down when applied to the microscopic
world of atoms and nuclei. Indeed, the architects of the laws of quantum physics con-
structed them in such a way that the results of calculations based on the new laws agreed
with those of Newtonian mechanics when applied to problems in the macroscopic
world. The domain of Newtonian physics would be seen to be merely limited, rather
than “wrong,” and its practitioners from that time on would now have to be aware of
these limits.

In the early 1900s the atom was thought to be a sort of distributed blob of positive
charge within which were embedded the negatively charged electrons discovered in 1897
by J. J. Thomson (1856-1940). The model was first suggested by Lord Kelvin (1824-1907)
in 1902 but mathematically refined a year later by Thomson. Thomson developed the
model with emphasis on the mechanical and electrical stability of the system. In his honor
it became known as the Thomson atom.
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In 1907, Rutherford accepted a position at the University of Manchester where he
encountered Hans Geiger (1882—1945), a bright young German experimental physi-
cist, who was about to embark on an experimental program designed to test the valid-
ity of the Thomson atom. His idea was to direct a beam of the recently discovered
alpha particles emitted from radioactive atoms toward thin metal foils. A detailed analy-
sis of the way they scattered should provide information on the structure of the atom.
With the help of Ernest Marsden, a young undergraduate, Geiger would carry out these
investigations over several years. Things behaved more or less as expected, except there
were many more large-angle scatterings than could be accounted for by the Thomson
model. In fact, some of the alpha particles scattered completely backward at angles of
180°. When Rutherford heard of this, he was dumbfounded. It was as though an onrush-
ing freight train had been hurled backward on striking a chicken sitting in the middle
of the track.

In searching for a model that would lead to such a large force being exerted on a
fast-moving projectile, Rutherford envisioned a comet swinging around the Sun and
coming back out again, just like the alpha particles scattered at large angles. This sug-
gested the idea of a hyperbolic orbit for a positively charged alpha particle attracted by
a negatively charged nucleus. Of course, Rutherford realized that the only important thing
in the dynamics of the problem was the inverse-square nature of the law, which, as we
have seen, leads to conic sections as solutions for the orbit. Whether the force is attrac-
tive or repulsive is completely irrelevant. Rutherford then remembered a theorem about
conics from geometry that related the eccentricity of the hyperbola to the angle between
its asymptotes. Using this relation, along with conservation of angular momentum and
energy, he obtained a complete solution to the alpha particle-scattering problem, which
agreed well with the data of Geiger and Marsden. Thus, the current model of the nuclear
atom was born.

We solve this problem next but be aware that an identical solution could be obtained
for an attractive force. The solution says nothing about the sign of the nuclear charge. The
sign becomes obvious from other arguments.

Consider a particle of charge ¢ and mass m (the incident high-speed particle) pass-
ing near a heavy particle of charge Q (the nucleus, assumed fixed). The incident particle
is repelled with a force given by Coulomb’s law:

fin= % (6.14.1)

where the position of Q is taken to be the origin. (We shall use cgs electrostatic units for
Q and g. Then r is in centimeters, and the force is in dynes.) The differential equation of
the orbit (Equation 6.5.12) then takes the form

d*u
s tu= _EQZ% (6.14.2)

and so the equation of the orbit is

4 1
Y T A cos(6—6,) - Qq/ml®

(6.14.3)
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We can also write the equation of the orbit in the form given by Equation 6.10.7c, namely,

ml Q—l -1
T 1+ 1+ 2EmPQ g )™ cos(6-6,) ©6.144)

because k = —Qq. The orbit is a hyperbola. This may be seen from the physical fact
that the energy E is always greater than zero in a repulsive field of force. (In our case

= mv +Qg/r.) Hence, the eccentricity e, the coefficient of cos (60— 6,), is greater than
umty, which means that the orbit must be hyperbolic.

The incident particle approaches along one asymptote and recedes along the other,
as shown in Figure 6.14.1. We have chosen the direction of the polar axis such that the
initial position of the particle is =0, r = co. It is clear from either of the two equations
of the orbit that r assumes its minimum value when cos (60— 6,) = 1, that is, when 6= 6,.
Because r = o when 8=0, then r is also infinite when 6= 26,. Hence, the angle between
the two asymptotes of the hyperbolic path is 26, and the angle 6, through which the inci-
dent particle is deflected is given by

6,= - 26, (6.14.5)
Furthermore, in Equation 6.14.4 the denominator vanishes at 6= 0 and 6= 26,. Thus,
—1+ (1 +2EmP’Q )" cos6,=0 (6.14.6)
from which we readily find
tan@, = (2Em)?1Q7'q™! = cot% (6.14.7)

The last step follows from the angle relationship given above.
In applying Equation 6.14.7 to scattering problems, the constant [ is usually expressed
in terms of another quantity b called the impact parameter. The impact parameter is the

Hyperbolic path

T'min
charge g 9(}\
\

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square
repulsive force field of another charged particle.



6.14 Motion in an Inverse-Square Repuilsive Field 267

perpendicular distance from the origin (scattering center) to the initial line of motion of
the particle, as shown in Figure 6.14.1. Thus

l1]=|r X v|=buv, (6.14.8)

where v, is the initial speed of the particle. We know also that the energy E is constant
and is equal to the initial kinetic energy %mv(z) . because the initial potential energy is zero
(r = o). Accordingly, we can write the scattering formula (Equation 6.14.7) in the form

0

cot ==

9 0q 0q (6.14.9)
giving the relationship between the scattering angle and the impact parameter.

In a typical scattering experiment a beam of particles is projected at a target, such
as a thin foil. The nuclei of the target atoms are the scattering centers. The fraction of
incident particles that are deflected through a given angle 6, can be expressed in terms
of a differential scattering cross section 0(6,) defined by the equation

%N =na(8,)dQ (6.14.10)

_bmv; _ 2DE

Here dN is the number of incident particles scattered through an angle between 6, and
0,+d0,, N is the total number of incident particles, n is the number of scattering centers
per unit area of the target foil, and dQ is the element of solid angle corresponding to the
increment d,. Thus, dQ = 27 sin 6, d6,.

Now an incident particle approaching a scattering center has an impact parameter
lying between b and b + db if the projection of its path lies in a ring of inner radius b and
outer radius b +db (see Figure 6.14.1). The area of this ring is 27zb db. The total number
of such particles must correspond to the number scattered through a given angle, that is

dN =Nno(60,)2x sin 6, d6, = Nn2zb db (6.14.11)
Thus,
b | db
6 =
o(6,) sin6, | 6, (6.14.12)

To find the scattering cross section for charged particles, we differentiate with respect to
6, in Equation 6.14.9:

L E‘ b,

Zsing(%) Qq | dé,

(The absolute value sign is inserted because the derivative is negative.) By eliminating b
and |db/d6;| among Equations 6.14.9, .12, and .13 and using the identity

sin 6, =2 sin(6,/2) cos(6,/2),

(6.14.13)

we find the following result:

22
o(Gs)=Q 9 1

16E* sin*(6,/2) (6.14.14)
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This is the famous Rutherford scattering formula. It shows that the differential cross sec-
tion varies as the inverse fourth power of sin(6,/2). Its experimental verification in the
first part of this century marked one of the early milestones of nuclear physics.

EXAMPLE 6.14.1

An alpha particle emitted by radium (E = 5 million eV =5 x 10° x 1.6 x 107 erg) suf-
fers a deflection of 90° on passing near a gold nucleus. What is the value of the impact
parameter?

Solution:

For alpha particles q = 2e, and for gold Q = 79, where ¢ is the elementary charge. (The
charge carried by a single electron is —e.) In egs units e = 4.8 x 107 esu. Thus, from
Equation 6.14.9

_ 2x79x(4.8)* x10™® cm
2x5%1.6x107°
=21x10" cm

b= 9% cot45°
2E

Calculate the distance of closest approach of the alpha particle in Example 6.14.1.

Solution:

The distance of closest approach is given by the equation of the orbit (Equation 6.14.4)
for 6= 6,; thus,

ml2Q—lq—l
Tmin = 1+ L+ 2EmIPQ g o)

On using Equation 6.14.9 and a little algebra, the preceding equation can be written

- bcot(0,/2) - bcos(0,/2)
min = _1+[1+cot?>(0/2)]  1-sin(6,/2)
Thus, for 6, =90°, we find r,,,, =2.41 b =5.1 x 10 cm.

min

Notice that the expressions for r,,, become indeterminate when [ =b = 0. In this case
the particle is aimed directly at the nucleus. It approaches the nucleus along a straight
line, and, being continually repelled by the Coulomb force, its speed is reduced to zero
when it reaches a certain point r,,,, from which point it returns along the same straight
line. The angle of deflection is 180°. The value of r,,, in this case is found by using the

fact that the energy E is constant. At the turning point the potential energy is Qg/r,,, and
the kinetic energy is zero. Hence, E = %mvg = Qq/1 40, and

:@.

r
mi
" E
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For radium alpha particles and gold nuclei we find 7,;, = 10 cm when the angle of
deflection is 180°. The fact that such deflections are actually observed shows that the
order of magnitude of the radius of the nucleus is at least as small as 107

Problems

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Find the gravitational attraction between two solid lead spheres of 1 kg mass each if the
spheres are almost in contact. Express the answer as a fraction of the weight of either
sphere. (The density of lead is 11.35 g/cm®.)

Show that the gravitational force on a test particle inside a thin uniform spherical shell is zero
(a) By finding the force directly
(b) By showing that the gravitational potential is constant

Assuming Earth to be a uniform solid sphere, show that if a straight hole were drilled from
pole to pole, a particle dropped into the hole would execute simple harmonic motion.
Show also that the period of this oscillation depends only on the den51ty of Earth and is
independent of the size. What is the period in hours? (R,,,, = 6.4 x 10°m.)

Show that the motion is simple harmonic with the same period as the previous problem for
a particle sliding in a straight, smooth tube passing obliquely through Earth. (Ignore any
effects of rotation.)

Assuming a circular orbit, show that Keplers third law follows directly from Newton's second
law and his law of gravity: GMm/r® = mv*/r.

(a) Show that the radius for a circular orbit of a synchronous (24-h) Earth satellite is about
6.6 Earth radii.

(b) The distance to the Moon is about 60.3 Earth radii. From this calculate the length of
the sidereal month (period of the Moon’s orbital revolution).

Show that the orbital period for an Earth satellite in a circular orbit just above Earth’s sur-
face is the same as the period of oscillation of the particle dropped into a hole drilled
through Earth (see Problem 6.3).

Calculate Earth’s velocity of approach toward the Sun, when it is at an extremum of the latus
rectum through the Sun. Take the eccentricity of Earth’s orbit to be 5 and its semimajor
axis to be 93,000,000 miles (see Figure 6.5.1).

If the solar system were embedded in a uniform dust cloud of density p, show that the law
of force on a planet a distance r from the center of the Sun would be given by

GMm

F(r)= —(é) npmGr
A particle moving in a central field describes the spiral orbit r = rye*®. Show that the force
law is inverse cube and that @ varies logarithmically with ¢.

A particle moves in an inverse-cube field of force. Show that, in addition to the expo-
nential spiral orbit of Problem 6.10, two other types of orbit are possible and give their
equations.

The orbit of a particle moving in a central field is a circle passing through the origin, namely
=1, cos 6. Show that the force law is inverse—fifth power.



