
— Christiaan Huygens, memoir, De Motu Corporum ex mutuo impulsu Hypothesis,
composed in Paris, 5-Jan-1669, to Oldenburg, Secretary of the Royal Society

7.11 Introduction: Center of Mass and
Linear Momentum of a System

We now expand our study of mechanics of systems of many particles (two or more). These
particles may or may not move independently of one another. Special systems, called rigid
bodies, in which the relative positions of all the particles are fixed are taken up in the next
two chapters. For the present, we develop some general theorems that apply to all sys-
tems. Then we apply them to some simple systems of free particles.

Our general system consists of n particles of masses m1, m2,. . . , whose position
vectors are, respectively, r1, r2, . . . , We define the center of mass of the system as the
point whose position vector (Figure 7.1.1) is given by

r = m1r1 + m2r2 +• + = (7.1.1)
m1 + m2 + m

m = E the total mass of the system. The definition in Equation 7.1.1 is equiv-
alent to the three equations

— — — (7.1.2)
m m m
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are in direct impact with each other and have equal
ani Defore impact, rebound with velocities that are, apart
from the sign, the same." "The sum of the products of the magnitudes of each
hard body, multiplied by the square of the velocities, is always the same, before
and after the collision."
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Figure 7.1.1 Center of mass of a system
of particles.

We define the linear momentum p of the system as the vector sum of the linear
momenta of the individual particles, namely,

(7.L3)

On calculating t,,,, = from Equation 7.1.1 and comparing with Equation 7.1.3,
it follows that

p = (7.1.4)

that is, the linear momentum of a system of particles is equal to the velocity of the center
of mass multiplied by the total mass of the system.

Suppose now that there are external forces F1, F2 acting on the
respective particles. In addition, there may be internal forces of interaction between any
two particles of the system. We denote these internal forces by meaning the force
exerted on particle i by particlej, with the understanding that F11 = 0. The equation of
motion of particle i is then

(715)

where F2 means the total external force acting on particle i. The second term in
Equation 7.1.5 represents the vector sum of all the internal forces exerted on particle i
by all other particles of the system. Adding Equation 7.1.5 for the n particles, we have

(716)
1=1 1=1 f=l 1=1

In the double summation in Equation 7.1.6, for every force there is also a force Ffl,
and these two forces are equal and opposite

(7.1.7)
from the law of action and reaction, Newton's third law. Consequently, the internal forces
cancel in pairs, and the double sum vanishes. We can, therefore, write Equation 7.1.7 in
the following way:

= p = (7.1.8)

S
S

S

S

Center of mass

S

y
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In words: The acceleration of the center of mass of a system of particles is the same
as that of a single particle having a mass equal to the total mass of the system and
acted on by the sum of the external forces.

Consider, for example, a swarm of particles moving in a uniform gravitational field.
Then, because = m1g for each particle,

(7.L9)

The last step follows from the fact that g is constant. Hence,

= g (7.1.10)

This is the same as the equation for a single particle or projectile. Thus, the center of
mass of the shrapnel from an artillery shell that has burst in midair follows the same par-
abolic path that the shell would have taken had it not burst (until any of the pieces
strikes something).

In the special case in which no external forces are acting on a system (or if Z = 0),
then =0 and = constant; thus, the linear momentum of the system remains constant:

= p = = constant (7.1.11)

This is the principle of conservation of linear momentum. In Newtonian mechanics the
constancy of the linear momentum of an isolated system is directly related to, and is in
fact a consequence of, the third law. But even in those cases in which the forces between
particles do not directly obey the law of action and reaction, such as the magnetic forces
between moving charges, the principle of conservation of linear momentum still holds
when due account is taken of the total linear momentum of the particles and the elec-
tromagnetic field.1

EXAMPLE 7.1.1
At some point in its trajectory a ballistic missile of mass m breaks into three fragments
of mass m13 each. One of the fragments continues on with an initial velocity of one-half
the velocity v0 of the missile just before breakup. The other two pieces go off at right
angles to each other with equal speeds. Find the initial speeds of the latter two fragments
in terms of v0.

Solution:
At the point of breakup, conservation of linear momentum is expressed as

m m m=mv0 =—v1+——v2+——v3

'See, for example, P. M. Fishbane, S. Gasiorowicz, S. T. Thornton, Physics for Scientists and Engineers.
Prentice-Hall, Englewood Cliffs, NJ, 1993.
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The given conditions are: v1 = v0/2, v2 . v3 = 0, and v2 = v3. From the first we get, on
cancellation of the rn's, 3v0 = (v012) + v2 + v3, or

V0 = V2 + V3

Taking the dot product of each side with itself, we have

=(v2 +v3) (v2 +v3)= +2v2 •v3 =

Therefore,

5v2 = v3 = = 1.77v0

7.21 Angular Momentum and Kinetic
Energy of a System

We previously stated that the angular momentum of a single particle is defined as the cross
product r )< rnv. The angular momentum L of a system of particles is defined accordingly,
as the vector sum of the individual angular momenta, namely,

Xm2v1) (7.2.1)

Let us calculate the time derivative of the angular momentum. Using the rule for differ-
entiating the cross product, we find

=
(v1 )< rn.v1) Xrn1a1) (7.2.2)

Now the first term on the right vanishes, because, )< =0 and, because maj is equal
to the total force acting on particle i, we can write

dL (
i=1

(7.2.3)

i=1 j=1 j=l
where, as in Section 7.1, F2 denotes the total external force on particle i, and denotes
the (internal) force exerted on particle i by any other particlej. Now the double summation
on the right consists of pairs of terms of the form

XF31) (7.2.4)

Denoting the vector displacement of particlej relative to particle i by we see from the
triangle shown in Figure 7.2.1 that

(7.2.5)
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Figure 7.2.1 Definition of the vector ry. 0

Therefore, because Ffl = expression 7.2.4 reduces to

x (7.2.6)

which clearly vanishes if the internal forces are central, that is, if they act along the lines
connecting pairs of particles. Hence, the double sum in Equation 7.2.3 vanishes. Now the
cross product r, X F1 is the moment of the external force F1. The sum Zr1 x F, is, there-
fore, the total moment of all the external forces acting on the system. If we denote the
total external torque, or moment of force, by N, Equation 7.2.3 takes the form

(7.2.7)
dt

That is, the time rate of change of the angular momentum of a system is equal to the total
moment of all the external forces acting on the system.

If a system is isolated, then N =0, and the angular momentum remains constant in
both magnitude and direction:

L = X my1 = constant vector (7.2.8)

This is a statement of the principle of conservation of angular momentum. It is a gener-
alization for a single particle in a central field. Like the constancy of linear momentum
discussed in the preceding section, the angular momentum of an isolated system is also
constant in the case of a system of moving charges when the angular momentum of the
electromagnetic field is considered.2

It is sometimes convenient to express the angular momentum in terms of the motion
of the center of mass. As shown in Figure 7.2.2, we can express each position vector in
the form

= + (7.2.9)
where i relative to the center of mass. Taking the derivative
with respect to t, we have

V1 = (7.2.10)

2See footnote 1.

rlj
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m1

Figure 7.2.2 Definition of the vector

Here v,,, is the velocity of the center of mass and is the velocity of particle i relative
to the center of mass. The expression for L can, therefore, be written

(re,,,

X

+ X )C

Now, from Equation 7.2.9, we have

= = = 0 (7.2.12)

Similarly, we obtain

= — =0 (7.2.13)

by differentiation with respect to t. (These two equations merely state that the position
and velocity of the center of mass, relative to the center of mass, are both zero.)
Consequently, the second and third summations in the expansion of L vanish, and we can
write

L = rcm )C + 1, X (7.2.14)

expressing the angular momentum of a system in terms of an "orbital" part (motion of the
center of mass) and a "spin" part (motion about the center of mass).

r1

Center of mass

rcm
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A long, thin rod of length 1 and mass m hangs from a pivot point about which it is free
to swing in a vertical plane like a simple pendulum. Calculate the total angular momen-
tum of the rod as a function of its instantaneous angular velocity co. Show that the
theorem represented by Equation 7.2.14 is true by comparing the angular momentum
obtained using that theorem to that obtained by direct calculation.

Solution:
The rod is shown in Figure 7.2.3a. First we calculate the angular momentum of the
center of mass of the rod about the pivot point. Because the velocity of the center
of mass is always perpendicular to the radius vector r denoting its location relative to
the pivot point, the sine of the angle between those two vectors is unity. Thus, the mag-
nitude of is given by

L_ - -
— — m — m (0 — (I)

Figure 7.2.3b depicts the motion of the rod as seen from the perspective of its center
of mass. The angular momentum of two small mass elements, each of size dm
symmetrically disposed about the center of mass of the rod, is given by

= 2rdp = 2rvdm =

where is the mass per unit length of the rod. The total relative angular momentum is
obtained by integrating this expression from r =0 to r =1/2.

Lrei = 2.awf'2 r2dr = =

We can see in the preceding equation that the angular momentum of the rod about its
center of mass is directly proportional to the angular velocity co of the rod. The constant
of proportionality m12/12 is called the moment of inertia of the rod about its center
of mass. Moment of inertia plays a role in rotational motion similar to that of inertial mass
in translational motion as we shall see in the next chapter.

Figure 7.2.3 Rod of mass m and length
1 free to swing in a vertical plane about a
fixed pivot. (a) (b) (c)
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Finally, the total angular momentum of the rod is

= + Lrei =

Again, the total angular momentum of the rod is directly proportional to the angular
velocity of the rod. Here, though, the constant of proportionality is the moment of
inertia of the rod about the pivot point at the end of the rod. This moment of inertia is
larger than that about the center of mass. The reason is that more of the mass of the rod
is distributed farther away from its end than from its center, thus, making it more dif-
ficult to rotate a rod about an end.

The total angular momentum can also be obtained by integrating down the rod, start-
ing from the pivot point, to obtain the contribution from each mass element dm, as shown
in Figure 7.2.3c

= r dp = r(v dm) = dr

= =

And, indeed, the two methods yield the same result.

Kinetic Energy of a System
The total kinetic energy T of a system of particles is given by the sum of the individual
energies, namely,

(7.2.15)

As before, we can express the velocities relative to the mass center giving

(7.2.16)

= +

Because the second summation m1 vanishes, we can express the kinetic energy as

follows:

(7.2.17)

The first term is the kinetic energy of translation of the whole system, and the second is
the kinetic energy of motion relative to the mass center.

The separation of angular momentum and kinetic energy into a center-of-mass part
and a relative-to-center-of-mass part finds important applications in atomic and molec-
War physics and in astrophysics. We find the preceding two theorems useful in the study
of rigid bodies in the following chapters.
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Calculate the total kinetic energy of the rod of Example 7.2.1. Use the theorem repre-
sented by Equation 7.2.17. As in Example 7.2.1, show that the total energy obtained for
the rod according to this theorem is equivalent to that obtained by direct calculation.

Solution:
The translational kinetic energy of the center of mass of the rod is

= = =

The kinetic energy of two equal mass elements dm symetrically disposed about the
center of mass is

= (2dm) v • v = dr(ro.)2 = Jt.w2r2dr

where again, is the mass per unit length of the rod. The total energy relative to the center
of mass can be obtained by integrating the preceding expression from r =0 to r =112.

(Note: As in Example 7.2.1, the moment of inertia term appears as the con-
stant of proportionality to c02 in the previous expression for the rotational kinetic
energy of the rod about its center of mass. Again, the moment of inertia term
that occurs in the expression for rotational kinetic energy can be seen to be com-
pletely analogous to the inertial mass term in an expression for the translational
kinetic energy of a particle.)

The total kinetic energy of the rod is then

where we have expressed the final result in terms of the total moment of inertia of the
rod about its endpoint, exactly as in Example 7.2.1.

We leave it as an exercise for the reader to calculate the kinetic energy directly and
show that it is equal to the value obtained previously. The calculation proceeds in a fash-
ion completely analogous to that in Example 7.2.1.

Motion of Two Interacting Bodies:
The Reduced Mass

Let us consider the motion of a system consisting of two bodies, treated here as particles,
that interact with each other by a central force. We assume the system is isolated, and,
hence, the center of mass moves with constant velocity. For simplicity, we take the center
of mass as the origin. We have then

+ m212 = 0 (7.3.1)
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Figure 7.3.1 The relative
position vector B for the two-body
problem.

where, as shown in Figure 7.3.1, the vectors i\ and represent the positions of the par-
ticles m1 andm2, respectively, relative to the center of mass. Now, if n is the position vector
of particle 1 relative to particle 2, then

R=Fj—f2=FjI1+—I (7.3.2)

The last step follows from Equation 7.3.1.
The differential equation of motion of particle 1 relative to the center of mass is

R
ml = F1 = (7.3.3)

in which If(R)I is the magnitude of the mutual force between the two particles. By using
Equation 7.3.2, we can write

d2n n
= f(rØ— (7.3.4)

where

m m2p = 1 (7.3.5)
m1 +

The quantity p is called the reduced mass. The new equation of motion (Equation 7.3.4)
gives the motion of particle 1 relative to particle 2, and an exactly similar equation gives
the motion of particle 2 relative to particle 1. This equation is precisely the same as the
ordinary equation of motion of a single particle of mass p moving in a central field of force
given byf(R). Thus, the fact that both particles are moving relative to the center of mass
is automatically accounted for by replacing m1 by the reduced mass p. If the bodies are

B



7.3 Motion of Two Interacting Bodies: The Reduced Mass 285

ofequal mass m, then = m/2. On the other hand, if m2 is very much greater thanm1, so
that m11m2 is very small, then ji is nearly equal to m1.

For two bodies attracting each other by gravitation

f(R) = — Grn1m2
(7.3.6)

In this case the equation of motion is

=
— Grn1m2

eR (7.3.7)

or, equivalently,

m1jI =
— G(m1 +rn2)m1

eR (7.3.8)

where = R/R is a unit vector in the direction of ii
In Section 6.6 we derived an equation giving the periodic time of orbital motion of

a planet of mass m moving in the Sun's gravitational field, namely, r = 2ir
where M0 is the Sun's mass and a is the semimajor axis of the elliptical orbit of the planet
about the Sun. In that derivation we assumed that the Sun was stationary, with the origin
of our coordinate system at the center of the Sun. To account for the Sun's motion about
the common center of mass, the correct equation is Equation 7.3.8 in which m = m1 and

= m2. The constant k, which was taken to be GM0m in the earlier treatment, should
be replaced by G(M0 + m)m so that the correct equation for the period is

—1/2 3/2r= 2,r [G(M0 + m)] a (7.3.9a)

or, for any two-body system held together by gravity, the orbital period is

= 2r[G(m1 (7.3.9b)

If m1 and m2 are expressed in units of the Sun's mass and a is in astronomical units (the
mean distance from Earth to the Sun), then the orbital period in years is given by

= (m1 (7.3.9c)

For most planets in our solar system, the added mass term in the preceding expression
for the period makes very little difference—Earth's mass is only 1/330,000 the Sun's
mass. The most massive planet, Jupiter, has a mass of about 1/1000 the mass of the Sun,
so the effect of the reduced-mass formula is to change the earlier calculation in the ratio

= 0.9995 for the period of Jupiter's revolution about the Sun.

Binary Stars: White Dwarfs and Black Holes
About half of all the stars in the galaxy in the vicinity of the Sun are binary, or double;
that is, they occur in pairs held together by their mutual gravitational attraction, with each
member of the pair revolving about their common center of mass. From the preceding
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analysis we can infer that either member of a binary system revolves about the other in
an elliptical orbit for which the orbiting period is given by Equations 7.3.9b and c, where
a is the semimajor axis of the ellipse and and in2 are the masses of the two stars. Values
of a for known binary systems range from the very least (contact binaries in which the
stars touch each other) to values so large that the period is measured in millions of years.
A typical example is the brightest star in the night sky, Sirius, which consists of a very lumi-
nous star with a mass of 2.1 M® and a very small dim star, called a white dwarf, which
can only be seen in large telescopes. The mass of this small corrqianion is 1.05 M0, but
its size is roughly that of a large planet, so its density is extremely large (30,000 times
the density of water). The value of a for the Sirius system is approximately 20 AU (about
the distance from the Sun to the planet Uranus), and the period, as calculated from
Equation 7.3.9c, should be about

= (2.1 + 105)-112(20)312 years = 50 years

which is what it is observed to be.
A binary system that is believed to harbor a black hole as one of its components is

the x-ray source known as Cygnus X-1.3 The visible component is the normal star HDE
226868. Spectroscopic observation of the optical light from this star indicates that the
period and semimajor axis of the orbit are 5.6 days and about 30 x 106 km, respectively
The optically invisible companion is the source of an x-ray flux that exhibits fluctuations
that vary as rapidiy as a millisecond, indicating that it can be no larger than 300 km across.
These observations, as well as a number of others, indicate that the mass of HDE
226868 is at least as large as 20 M®, while that of its companion is probably as large as
16 M® but surely exceeds 7 M0. It is difficult to conclude that this compact, massive
object could be anything other than a black hole. Black holes are objects that contain
so much mass within a given radius4 that nothing, not even light, can escape their gray-
itational field. If black holes are located in binary systems, however, mass can "leak over"
from the large companion star and form an accretion disk about the black hole. As the
matter in this disk orbits the black hole, it can lose energy by frictional heating and
crash down into it, ultimately heating to temperatures well in excess of tens of millions
of degrees. X-rays are emitted by this hot matter before it falls completely into the hole
(Figure 7.3.2). Black holes are predicted mathematically by the general theory of
relativity, and unequivocal proof of their existence would constitute a milestone in
astrophysics.

3A. P. Cowley, Ann. Rev. Astron. Astrophys. 30, 287 (1992).

4According to the theory of general relatively, a nonrotating, spherically symmetric body of mass m becomes a
Schwarzschild black hole if it is compressed to a radius r,, Schwarzschild radius, where

2Gm=

in which c is the speed of light. The Earth would become a black hole if compressed to the size of a small marble;
the Sun would become one if compressed to a radius of about 3km, much smaller than the white dwarf com-
panion of Sirius.
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X-1 System.
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EXAMPLE 7.3.1
A certain binary star system is observed to be both eclipsing and spectroscopic. This
means that the system is seen from Earth with its orbital plane edge-on and that the
orbital velocities v1 and v2 of the two stars that constitute the system can be determined
from Doppler shift measurements of observed spectral lines. You don't need to under-
stand the details of this last statement. The important point is that we know the orbital
velocities. They are, in appropriate units, v1 = 1.257 AU/year and v2 = 5.027 AU/year.
The period of revolution of each star about its center of mass is r = 5 years. (That can
be ascertained from the observed frequency of eclipses.) Calculate the mass (in solar
mass units M0) of each star. Assume circular orbits.

Solution:
The radius of the orbit of each star about their common center of mass can be calcu-
lated from its velocity and period

1 1r1=—v1r=1AU r2=—v2r=4AU

Thus, the semimajor axis a of the orbit is

a = + = 5 AU

The sum of the masses can be obtained from Equation 7.3.9c

a3
m1 + m2 = = 5 M0

2,r
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The ratio of the two masses can be determined by differentiating Equation 7.3.1

m2 V1 im1v1+m2v2=O —= —
m1 v2

Combining these last two expressions yields the values for each mass, m1 = 4 M® and
ITLQ =1 M®.

*7•4 The Restricted Three-Body Problem5
In Chapter 6, we considered the motion of a single particle subject to a central force. The
motion of a planet in the gravitational field of the Sun is well described by such a theory
because the mass of the Sun is so large compared with that of a planet that its own motion
can be ignored. In the previous section, we relaxed this condition and found that we could
still apply the techniques of Newtonian analysis to this more general case and find an ana-
lytic solution for their motion. If we add just one more, third body, however, the problem
becomes completely intractable. The general three-body problem, namely the calculation
of the motion of three bodies of different masses, initial positions, and velocities, subject
to the combined gravitational field of the others, confounded some of the greatest minds
in the post-Newtonian era. It is not possible to solve this problem analytically because of
insurmountable mathematical difficulties. Indeed, the problem is described by a system
of nine second-order differential equations: three bodies moving in three dimensions.
Even after a mathematical reduction accomplished by a judicious choice of coordinate
system and by invoking laws of conservation to find invariants of the motion, the problem
continues to defy assault by modern analytic techniques.

Fortunately, it is possible to solve a simplified case of the general problem that none-
theless describes a wide variety of phenomena. This special case is called the restricted
three-body problem. The simplifications involved are both physical and mathematical: We
assume that two of the bodies (called the primaries6) are much more massive than the third
body (called the tertiary) and that they move in a plane—in circular orbits about their
center of mass. The tertiary has a negligible mass compared with either of the primaries,
moves in their orbital plane, and exerts no gravitational influence on either of them.

No physical system meets these requirements exactly. The tertiary always perturbs
the orbits of the primaries. Perfectly circular orbits never occur, although most of the
orbits of bodies in the solar system come very close—with the exception of comets. The
orbit of the tertiary is almost never coplanar with those of the primaries, although devi-
ations from coplanarity are often quite small. Gravitational systems with a dominant
central mass exhibit a remarkable propensity for coplanarity. Again, disregarding the
comets, the remaining members of the solar system exhibit a high degree of coplanarity,
as do the individual systems of the large Jovian planets and their assemblage of moons.

5Our analysis of the restricted three-body problem is based on P. Hellings, Astrophysics with a PC, An
Introduction to Computational Astrophysics, Willman-Bell, Inc., Richmond, VA (1994). Also, for an even more
in-depth analysis see V. Szebehely, Theory of Orbits, Academic Press, New York (1967).

6Usually, the most massive of the pair is called the primary and the least massive is called the secondary. Here,
we lump them together as the two primaries because their motion is only incidental to our main interest—the
motion of the third body.
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The restricted three-body problem serves as an excellent model for calculating the
orbital motion of a small tertiary in the gravitational field of the other two. It is fairly
easy to see two possible solutions depicting two extreme situations. One occurs when the
tertiary more or less orbits the center of mass of the other two at such a remote distance
that the two primaries appear to blur together as a single gravitational source. A second
occurs when the tertiary is bound so closely to one of the primaries that it orbits it in
Keplerian fashion, seemingly oblivious to the presence of the second primary. Both of these
possibilities are realized in nature. In this section, however, we attempt to find a third,
not so obvious, "stationary" solution; that is, one in which the tertiary is "held fixed" by
the other two and partakes of their overall rotational motion. In other words, it remains
more or less at rest relative to the two primaries; the orientation in space of the entire
system rotates with a constant angular speed, but its relative configuration remains fixed
in time. The great 18th-century mathematician Joseph-Louis Lagrange (1736—1813)
solved this problem and showed that such orbits are possible.

Equations of Motion for the Restricted
Three-Body Problem
The restricted problem is a two-dimensional one: All orbits lie within a single, fixed plane
in space. The orbit of each of the two primaries is a circle with common angular velocity
co about their center of mass. We assume that the center of mass of the two primaries
remains fixed in space and that the rotational sense of their orbital motion viewed from
above is counterclockwise as shown in Figure 7.4.1

We designate M1 the mass of the most massive primary, M2 the mass of the least mas-
sive one, and m the small mass of the tertiary whose orbit we wish to calculate. We choose
a coordinate system x'-y' that rotates with the two primaries and whose origin is their
center of mass. We let the +x-axis lie along the direction toward the most massive pri-
mary M1. The radii of the circular orbits of M1 and M2 are designated a and b, respec-
tively. These distances remain fixed along the x'-axis in the rotating coordinate system.

//r2 ////// —M2,

Figure 7.4.1 Coordinate
system for restricted
three-body problem.

m

r
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Letting the coordinates of the tertiary be (x', y'). the distance between it and each of
the two primaries is

= iJ(x' — a)2 + y'2 (7.4.la)

= 4(x'+ b)2 + y'2 (7.4.lb)

The net gravitational force exerted on m (see Equation 6.1.1) is thus

(7.4.2)
r1

r are the vector positions of m with respect of M1 and M2. This force is the
only real one that acts on m, but because we have effectively nullified the motion of the
two primaries by choosing to calculate the motion in a frame of reference that rotates
with them, we must include the effect of the noninertial forces that are introduced as a
result of this choice.

The general equation of motion for a particle in a rotating frame of reference was given
by Equation 5.3.2. Because the origin of the rotating coordinate system remains fixed in
space, A0 = 0, and because the rate of rotation is a constant, to = 0 and Equation 5.3.2 takes
the form

F' = ma' = F — 2mw)( v' — mw)( (to x r') (7.4.3)

Because m is common to all terms in Equation 7.4.3, we can rewrite it in terms of accel-
erations as

a'=.!._2wxv'_wx(wxr') (7.4.4)

We are now in a position to calculate the later two noninertial accelerations in
Equation 7.4.4—the Coriolis and centrifugal accelerations

2w x v' = 2 tok' x (i'±' + = —i'2 + j'2 w±' (7.4.5)

and

tox (to x r') = wk' x [wk' x (i'x' + j'y')]
74 6

= —
( . . )

We now insert Equations 7.4. la and b, 7.4.2, 7.4.5, and 7.4.6 into 7.4.4 to obtain the equa-
tions of motion of mass m in the x' and y' coordinates

x'—a r'+bx =-GM1 -GM2
[(r' — a) + y' I [(x' + b) + Y' I (7.4.7a)

—GM2[(x'—a)2 ±y'2]&2 [(x'+b)2 +y'2?2 (7.4.Th)
+ co2y' — 2co±'
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The Effective Potential: The Five Lagrangian Points
Before solving Equations 7.4.7a and b, we would like to speculate about the possible
solutions that we might obtain. Toward this end, we note that the first three terms in each
of those equations can be expressed as the gradient of an effective potential function, V(r')
in polar coordinates

V(r') =
—______ — —

w2r'2 (7.4.8a)

or V(x', y') in Cartesian coordinates

GM1 GM2 1 2 ,2 ,2V(x , y ) = —_____________ —

_____________

— co (x + y ) (7.4.8b)
— a)2 + y'2 + + y'2

The last term in Equations 7.4.7a and b is velocity-dependent and cannot be expressed
as the gradient of an effective potential. Thus, we must include the Coriolis term as an
additional term in any equation that derives the force from the effective potential. For
example, Equation 7.4.3 becomes

F' = — VV(x', y') — 2mo X v (7.4.9)

A considerable simplification in all further calculations may be achieved by express-
ing mass, length, and time in units that transform V(x', y') into an invariant form that
makes it applicable to all restricted three-body situations regardless of the values of
their masses. First, we scale all distances to the total separation of the two primaries; that
is, we let a + b equal one length unit. This is analogous to the convention in which the
astronomical unit, or AU, the mean distance between the Earth and the Sun, is used
to express distances to the other planets in the solar system. Next, we set the factor
G(M1 + M2), equal to one "gravitational" mass unit. The "gravitational" masses GM1 of
each body can then be expressed as fractional multiples a, of this unit. Finally, we set
the orbital period of the primaries 'r equal to time units. This implies that the angu-
lar velocity of the two primaries about their center of mass and, by association, the rate
of rotation of the x'-y' frame of reference, is w = 1 inverse time unit. Use of these scaled
units allows us to characterize the equations of motion by the single parameter a, where
o < a < 0.5. In addition, it has the added benefit of riding our expressions of the obnox-
ious factor G.

In terms of a, the distance of each primary from the center of mass is then

/3=±=1..a (7.4.10)a+b a+b

The coordinates of the first primary are, thus, (a, 0) and those of the second primary are
(1— a, 0). Furthermore, because the origin of the coordinate system is the center of mass,
from Equation 7.3.1, we have

M1a = M2b (7.4.11)



GM b=—=1—a
G(M1+M2) a+b

GM2 ba2— =—=a
G(M1+M2) a+b

The masses of the two primaries: M2
The parameter a:
The scaled masses of the two primaries
Coordinates (x, y) of the two primaries:
Unit of "gravitational" mass G(M1 + M2):
Orbital period: 'r =5 years = 2ir time units
Unit of time: r/2ir
Angular speed: co = 2ir/'r (=1 inverse time unit)
Unit of length: a + b =5 AU

4 M® and 1 M®, respectively
1/(1 +4)=0.2.
1—a=0.8; a=0.2.
(0.2, 0), (—0.8, 0)

20 326.6x10 m/s
1.58x108s
2.51 x s (0.796 year)
3.98 x 10_8
7.48 x 1011 m

1-a a
V(x', y') = —

______________

— a)2 + y'2 — + 1—a)2 + y'2
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and the "gravitational" masses of each primary can then be expressed also in terms of the
factor a

(7.4. 12a)

(7.4. 12b)

M1 is the mass of the larger primary, and M2 is the mass of the smaller one, hence, 0< a
<0.5andO.5<1—a<1.

EXAMPLE 7.4.1
Using the previously discussed units, describe the general properties for the binary star
system in Example 7.3.1. The mass of the Sun is M® = 1.99 x kg. The astronomi-
cal unit is 1 AU = 1.496 x m.

Solution:

+
(7.4.13)

In terms of these new units, the effective potential function of Equation 7.4.8b
becomes

2

A plot of the effective potential V(x', y') is shown in Figure 7.4.2 for the Earth—Moon
primary system, where the parameter a = 0.0121. Plots of the effective potential of
other binary systems, such as binary stars where the parameter a is rarely less than 20%
or, at the other extreme, the Sun—Jupiter system where a = 0.000953875, are qualita-
tively identical.

It is worth taking the time to examine this plot closely because it exhibits a number
of features that give us some insight into the possible orbits of the tertiary.

• V(x', y') -4—oo at the location of the two primaries. These points are singularities.
This is a consequence of the fact that each primary has been treated as though it
was a point mass. We might imagine that, if a tertiary were embedded somewhere
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Figure 7.4.2 Effective
potential V(x', y') for the
Earth—Moon system.

within one of those potential "holes," it might orbit that primary as though the other
primary didn't even exist. As an example, consider the Sun—Jupiter system: Each
primary is the source of an accouterment of "satellites"; Jupiter has its moons and
the Sun has its four inner, terrestrial planets. Neither primary interferes with the
attachments of the other (at least not very much). Note, though, that the angular
speeds of all these "satellites" about their respective primary are much greater
than the angular speed of the two primaries about their center of mass. In addi-
tion, tertiaries in such orbits are dragged along by the primary in its own orbit.

• V(x', y') -4 —00 as either x' or y' —4 oo. This is a consequence of the rotation of the
x'y' coordinate system. In essence, any tertiary initially at rest with respect to this
rotating system, but far from the center of mass of the two primaries, experiences
a large centrifugal force that tends to move the body even farther from the origin.
Eventually, such a body might find itself in a stable orbit at some remote distance
Er'> (a + b)] around the center of mass of the two primaries but not at rest in the
rotating frame ofreference. The angular speed of such a tertiary would be so much
smaller than the angular speed of the two primaries that a stable, counterclockwise,
pro grade orbit in a fixed frame of reference would appear to be a stable, clockwise,
retrograde orbit in the rotating system, with an angular velocity that is the nega-
tive of that of the primaries. An example of this is our nearest stellar neighbor, the
three-body, a-Centauri star system, made up of two primaries, a-Centauri A and
B and a tertiary, Proxima Centauri (Figure 7.4.3).

• There are five locations where VV(x', y') = 0, or where the force on a particle at
rest in the x'y' frame of reference vanishes. These points are called the Lagrangian
points, after Joseph-Louis Lagrange. They are designated L1—L5 in his honor. Three
of these points are collinear, lying along the x'-axis. L1 lies between the two pri-
maries. L2 lies on the side opposite the least massive primary, and L3 lies on the
side opposite the most massive primary. These three points are saddle points of
V(x', y'). Along the x' direction they are local maxima, but along the y' direction
they are local minima.

• The two primaries form a common base of two equilateral triangles at whose apex
lie the points L4 and L5, which are absolute maxima of the function V(x', y'). As

V(x', y')

—1.5

—1.75



294 CHAPTER 7 Dynamics of Systems of Particles

Figure 7.4.4 Contour plot of
the effective potential V(x', y')
for the Earth-Moon system.

\

/

the primaries rotate about their center of mass, L4 remains 600 ahead of the least
massive primary (in the +y' direction), and L5 remains 600 behind it (in the —y'
direction). The location of these five points can be more easily visualized by exam-
ining a contour plot of the effective potential function shown in Figure 7.4.4.

• Each line in the contour plot is an equipotential, that is, a line that satisfies the con-
clition y) = where is a constant. Normally, the equipotential lines in con-
tour plots represent "heights" V, that differ from one another by equal amounts.
This means that regions of the plot where the gradient, VV(x', y'), is "steep" (or
the force is large) would exhibit closely packed contour lines. Regions where the
gradient is "flat" (or the force approaches zero) would exhibit sparsely packed

\
//////

/
a-Centauri

A
\

Centauri

//N
S.' —

Figure 7.4.3 The a-Centauri system.
The masses of the primaries are 1.1 and
O.88M®. The mass of Proxima Centauri
is 0.1M0. A and B separated by 25 AU,
and Proxima Centauri orbits the pair at a
distance of 50,000 AU.
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contour lines. We have not adhered to this convention in Figure 7.4.4. We have
decreased the "step size" between contour heights that pass near the five Lagrarigian
points to illuminate those positions more clearly.

You might guess that it would be possible for a tertiary to remain at any one of these
five points, synchronously locked to the two primaries as they rotate about their center
of mass. It turns out that this never happens in nature for any tertiary located at L1—L3.
These are points of unstable equilibrium. If a body located at one of these points is per-
turbed ever so slightly, it moves toward one primary and away from the other, or away
from both primaries.

Close examination of Figures 7.4.3 and 7.4.4 reveals that the effective potential is
rather flat and broad around L4 and L5, suggesting that a reasonably extensive, almost force-
free, region exists where a tertiary might comfortably sit, more or less balanced by the
opposing action of the gravitational and centrifugal forces. Because L4 and L5 are loca-
tions of absolute maxima, however, you might also guess that no stable, synchronous orbit
is possible at these points either. Remember, though, that all the forces acting on the ter-
tiary are not derived from the gradient of V(x', y'). The velocity-dependent Coriolis force
must be considered and it has a nonnegligible effect, particularly in any region where it
dominates, which under certain conditions can be the case in the region surrounding L4
and L5. The Coriolis force always acts perpendicular to the velocity of a particle. Thus, it
does not alter its kinetic energy because F . v =0. If a tertiary is nearly stationary in the
x'y' frame of reference, moving slowly in the proper direction near either L4 or L5, the
Coriolis force might dominate the nearly balanced gravitational and centrifugal forces and
simply redirect its velocity, causing the tertiary to circulate around L4 or L5. In fact, this
can and does happen in nature. The Coriolis force creates an effective, quasi-elliptical bar-
rier around the L4 and L5 points, thus, turning the maxima of the effective potential into
small "wells" of stability. Given the right conditions, we might expect the tertiary to
closely follow one of the equipotential contours around L4 and L5, both its kinetic and
potential energies remaining fairly constant throughout its motion.

The situation just described is analogous to the circulation of air that occurs around
high-pressure systems, or "bumps," in the Earth's atmosphere. Gravity tries to pull the
air toward the Earth; centrifugal force tries to throw it out; as air spills down from the
high, the Coriolis force causes it to circulate about the high-pressure bump, clockwise in
the Northern Hemisphere. Such circulating systems in the atmosphere of Earth are only
stable temporarily. They form and then dissipate. The Great Red Spot on Jupiter, how-
ever, is a high-pressure storm that is a permanent feature of its atmosphere—permanent
in the sense that it has been there ever since Galileo saw it with his telescope about
400 years ago! Note that these circulatory patterns are "stationary" with respect to the
rotating system. The same holds true for the orbit of a tertiary around L4 and L5.

The Trojan Asteroids
The Trojan asteroids are a particular group of asteroids in a 1:1 orbital resonance with
Jupiter and whose centroids lie along the orbit of Jupiter, 600 ahead of it and 600 behind
(see Figure 7.4.5). These are the L4 and L5 points in the Sun—Jupiter primary system.
Notice that the Trojans are spread out somewhat diffusely about the L4 and L5 points.
Each member of the group rotates with Jupiter about the Sun in a fixed frame of reference



Figure 7.4.5 (a) The
Trojan asteroids. (b) Trojan
asteroids and the asteroid
belt shown with orbits of
Jupiter, Mars and Earth.
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but is slowly circulating clockwise about L4 and L5, as viewed from above in the x'y' frame
of reference. In this section, we calculate some examples of the orbits of these asteroids.

First, we rewrite the equations of motion (Equations 7.4.7a and b) using the scaled
coordinates we just introduced. Letting

= +y'2 = + y'2 (7.4.14)

Equations 7.4.7a and b become

(x'—a) (x'+l—a) ,
x = —(1— a) — a + x + (7.4. 15a)

= — + y'—2±' (7.4.15b)

In Example 4.3.2, we employed Mathematica's numerical differential equation solver,
NDSolve, to solve a set of coupled, second-order differential equations like the ones
in Equations 7.4.15a and b. We employ the same technique here with one minor
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difference: we introduce two additional variables u' and v', such that

= (7.4.16a)

= (7.4.16b)
to convert the pair of second-order equations in Equations 7.4. 15a and b into two first-
order ones

(x'—a) (r'+l—a)u =—(1—a) —a +x +2v (7.4.16c)

+y'—2u' (7.4.16d)

This was the same trick we used in Section 3.8, where we solved for the motion of the
self-limiting oscillator. The trick is a standard ploy used to convert n second-order dif-
ferential equations into 2n first-order ones, making it possible to use Runge-Kutta tech-
niques to solve the resulting equations. Most numerical differential equation solvers use
this technique. Mathcad requires that the user input the 2n equations in first-order form.
This is not a requirement in Mathematica, although it is still an option. We use the tech-
nique because it is so universally applicable. In the following section, we outline the spe-
cific call that we made to NDSolve. It is analogous to the one discussed in Example 4.3.2.
We dropped the superfluous primes used to label the rotating coordinates because
Mathematica uses primes in place of dots to denote the process of differentiation, that is,

means ±. We urge you to remember that the variables x, y, u, and v used in Mathematica
calls refer to the rotating coordinate system, and the number of primes beside a variable
refer to the order of the derivative.

NDSolve [(equations, initial conditions}, {tz, v, x, y}, {t,

{equations, initial conditions}
Insert the four numerical differential equations and initial conditions using the fol-
lowing format

{x' [t] = =
y'[t] = = vEt],

u' [t] = = —(1— a) (x [t] — a)!,-1 (x[t], y ft])3 — a(x [t] + 1— a)1r2 (x [t], yEt])3

+ x [t] + 2v [t],

v' [t] = = —(1— a)y [t]/tj (x [t], y [ti)3
—ay[t]/r2(r[t], yEt])3 + yEt] —2 u[t],

x[O]= = x0, y[0]= = Yo' u[O] = = u0, v[O]= = v0)
• {r,y,u,v}

Insert the four dependent variables whose solutions are desired
{x, y, u, v}

• It t tmm' max
Insert the independent variable and its range over which the solution is to be eval-
uated {t, 0,
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Parameter Orbit 1 Orbit 2 Orbit 3 Orbit 4 Orbit 5

x0 —0.509 —0.524 —0.524 —0.509 —0.532
Yo 0.883 0.909 0.920 0.883 0.920
u0 0.0259 0.0647 0.0780 —0.0259 0.0780
v0 0.0149 0.0367 0.0430 —0.049 0.0430
T (units) 80.3 118 210.5 —
T (years) 152 223 397 152k

Figure 7.4.6 Orbits 1,2,3 of the
Trojan asteroids corresponding to the
conditions given in Table 7.4.1.

Note, the two functions r1[x, yl and r2[x, y] (see Equation 7.5.14) must be defined in
Mathematica before the call to NDSolve. This is also true for the initial conditions x0,
u0, and v0 and the value of a. The value of a for the Sun—Jupiter system is 0.000953875.

We calculated orbits for five sets of initial conditions, in each case starting the terti-
ary near L4. The starting conditions and period of the resulting orbit (if the result is a stable
orbit) are shown in Table 7.4.1.

As before (Example 4.3.2) we used Mathematica's ParametricPlot to generate plots
of each of the orbits whose initial conditions are given in Table 7.4.1. Plots of the first three
orbits are shown in Figure 7.4.6.

The unit of is the mean distance between Jupiter and the Sun, a + b = 5.203 AU,
or about 7.80 x 10 m. The unit of time was defined such that one rotational period
of the primary system, the orbital period of Jupiter (T1 =11.86 years), equals time units.
Thus, one time unit equals = 1.888 years. Tertiaries that follow orbits 1 and 2 cir-
culate slowly, clockwise, around L4. Their calculated periods are 80.3 and 118 time units,
respectively. Using the conversion factor gives us the periods of their orbits in years listed
in the last row of Table 7.4.1. Orbit 3 is particularly interesting. The tertiary starts closer
to Jupiter than do the other two and moves slowly over L4 and back around the Sun, more
or less along Jupiter's orbital path. It then slowly migrates toward Jupiter, passing under



Figure 7.4.7 Trojan asteroids—
orbit 4 (see Table 7.4.1).
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L5 and approaching as close to Jupiter as when it started near L4. Then it loops around
L5, passes back around the Sun, and moves back toward Jupiter, passing just under L4 to
the point where it started. The period of this orbit is 397 years.

Notice that the orbits closely follow the equipotential contours shown in Figure 7.4.4.
This is not too surprising because as we remarked earlier, the Coriolis force does not
change the kinetic energy of the tertiary. Thus, because the gravitational and centrifugal
forces are more or less in balance, the orbits ought to follow the equipotential contours
rather closely. The contours circulate around L4 and L5 individually, as do orbits 1 and 2,
and a few contours circulate around L4 and L5 together, as does orbit 3. Given the shape
of these orbits, it is easy to understand why the Trojan asteroids appear to be the rather
loosely strung out cluster that you see in Figure 7.4.5.

In all cases, the orbits circulate in clockwise fashion like the air around high pressures
in the Northern Hemisphere of Earth. The Coriolis force is directed "inward" for clock-
wise rotation and "outward" for counterclockwise rotation because of the sign of co X v.
Orbit 4, shown in Figure 7.4.7, reflects the consequences of a sign reversal in co )< v if we
try to set up a counterclockwise circulation about L4. The orbit was generated with the
same parameters as those of the stable orbit 1, except the sign of the initial velocity was
reversed. The tertiary, after executing several loopty-loops, is soon thrown completely out
of the region between Jupiter and the Sun. A velocity reversal like this would have no effect
on the shape of a Keplerian orbit about a single, central gravitational force. The result-
ing stable orbit would simply be a reversed direction, retrograde orbit. Although most orbits
in the solar system are prograde (counterclockwise as seen from above the plane of the
ecliptic), retrograde (clockwise) orbits do occur, as, for example, Triton, Neptune's major
moon. Reversed orbits are not possible around L4 and L5.

The conditions for the stability of these clockwise orbits around L4 and L5 have been
studied in much more detail than can be presented here. The interested reader is referred

—2
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Figure 7.4.8 Trojan asteroids—
orbit 5 (see Table 7.4.1).

to the book by V. Szebehely referenced in footnote 4. Stable orbits are only possible for
values of the mass parameter = 0.03852. The Jupiter— Sun system easily meets that
condition, but the orbits of some of the Trojans are only marginally stable. This is par-
ticularly true for orbits such as orbit 3. Perturbations, if large enough, can have dramatic
consequences for tertiaries in such orbits. Examine the starting conditions for orbit 5,
which are virtually identical to those for orbit 3 except for the initial x' coordinate, which
was changed by about 2%. The resultant "orbit" is shown in Figure 7.4.8. The trajectory
of the tertiary was followed for 300 time units, or about 566 years. Eventually, as was the
case for orbit 4, the asteroid was thrown completely out of the region, finally set-
fling down in orbit about both primaries at a distance of about 3 units, or 15 AU, which
places it somewhere between Saturn and Neptune. In fact, Jupiter is believed to have had
just this effect on many of the asteroids that existed near it during the formative stages
of the solar system.

Are there any other examples of objects orbiting primaries at the L4 and L5 points?
A prime example is that of a number of Saturn's large supply of moons. Telesto and
Calypso, two moons discovered by the Voyager mission, share an orbit with Tethys. Saturn
and Tethys are the primaries, and Telesto is at L4 and Calypso at L5. Helene and Dione
share another orbit that is 1.28 times farther from Saturn than the one occupied by
Tethys, Telesto, and Calypso. Helene is located at the L4 point of this orbit, and Dione is
the primary. No moon is found for this orbit at L5.

A number of space colony enthusiasts have argued that a large space colony could be
deployed in a stable orbit at L5 of the Earth—Moon primary system.7 The mass parame-
ter for the Earth—Moon system is a = 0.012 1409, which is certainly less than the critical

7G. K. O'Neill, "The Colonization of Space," Phys. Today, pp. 32—40 (September, 1974).
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value a0, so one might guess that orbits about L5 would be stable. The Sun would exert
perturbations on such an orbiting colony, however, and it is not obvious that its orbit
would remain stable for long. This particular restricted four-body problem was only
solved recently, in 1968. Quasi-elliptical orbits around L5, with excursions limited to a few
tenths of the Earth—Moon distance, were found to be stable.8 If one adds the effects of
Jupiter to the problem, however, long-term stability becomes problematical. The indus-
trious student might want to tackle this problem numerically.

EXAMPLE 7.4.2
Calculate the coordinates of the collinear Lagrange points for the Earth—Moon
system and the values of the effective potential function at those points.

Solution:
These three collinear Lagrange points all lie along the x'-axis, where y' =0. These points
represent extrema of the effective potential function, V(x', y'). Normally, we would find
these points by searching for solutions of the equation

y') =0

Mathematica, however, has a tool, its FindMinimum function, that allows us to locate
minima of functions directly, without first calculating their derivatives. Mathematica
saves us a lot of work by effectively taking these derivatives for us. The Lagrange points,
L1—L3, are located at the maxima of V(x', y' = 0), however, so, to use Mathematica's
FindMinimum, we need to pass to it a functionf(x') = —V(x', y' =0) whose minima are
the locations of L1—L3.

f(x') = —V(x' y') = 1— a + a + X

Ix'—aI Ix'—(a—l)I 2

We have written the denominators in the preceding equation as absolute values to
emphasize that they are positive definite quantities regardless of the value of x' relative
to the critical values a and a — 1. When we passf(x') to Mathematica's FindMinimum
function, we need to ensure that: (1) FindMinimum can calculate the derivatives off(x')
because that is one of the things it does in attempting to locate the minima and that (2)
the values in the denominator remain positive definite regardless of any action that
FindMinimum takes onf(x'). Thus, we need to remove the absolute values in the denom-
inators off(x') to eliminate any possible pathologies in the derivative-taking process, but
then we must replace their effect, for example, by multiplying the first two terms in the
expression by a "step" function defined to take on the values ±1 depending on the
value of x' relative to a and a — 1. We call this "step" function sgn(x) and define it to
equal —1 when its argument x <0 and +1 when x >0.

8R. Kolenkiewicz, L. Carpenter, "Stable Periodic Orbits About the Sun-Perturbed Earth-Moon Triangular
Points," AIAAJ. 6, 7, 1301 (1968).
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Figure 7.4.9 Regions of
applicability for the sgn functions. —2 —1

f(x)

Lagrange
Call Point x0 sgn(x — a) sgn(x — (a — 1))

1 L2 —1.2 —1 —1 —1.06883 1.51874
2 L1 —0.8 —1 +1 —0.932366 1.51938
3 L3 1.0 +1 +1 1.0004 1.50048

Inserting it into the expression above gives

1—a af(x )=sgn(x — a), +sgn(x —

We can now pass the preceding function to FindMinimum. The sgn function takes
on a value that insures that the terms in the equation always remain positive regardless
of the region along the x'-axis that is being searched for one of the minima off(x'). We
also need to pass FindMinimum initial values of x' to begin the search. We plotf(x') in
Figure 7.4.9 to find approximate locations of the three minima we are using as these start-
ing points. L2 is the minimum located exterior to the singularity at x' = —1 that repre-
sents the location of Jupiter. Thus, L2 = —(1 + €). is located on the interior side of
this singularity. Thus, L1 —(1 — e) and L3 is located just beyond the mirror image of
Jupiter's singularity at x' = +1 opposite the Sun. Thus, L3 +(1 + €). e simply denotes
some unknown small value. We now make three calls to FindMinimum to locate each
of the three collinear Lagrange points.

Each call takes the form: Find Minimum [function, {x, x0}] where the argument func-
tion meansf(x) as previously defined. Again, we drop the prime notation. x is the inde-
pendent variable of the function, and x0 is the value used to start the search. Table 7.4.2
lists the parameters input to each call. The output of the call are the locations XM of
the Lagrange points and the corresponding values of f(xmjj. The values of x0 were
chosen to ensure that the search starts in the region in which the desired Lagrange point
is located and fairly near to it.
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7.5 I Collisions
Whenever two bodies undergo a collision, the force that either exerts on the other during
the contact is an internal force, if the bodies are regarded together as a single system. The
total linear momentum is unchanged. We can, therefore, write

P2 = + (7.5.la)

or, equivalently,

m1v1 + m2v2 = + m2v'2 (7.5.lb)

The subscripts 1 and 2 refer to the two bodies, and the primes indicate the respective
momenta and velocities after the collision. Equations 7.5.la and b are quite general.
They apply to any two bodies regardless of their shapes, rigidity, and so on.

With regard to the energy balance, we can write

(7.5.2a)
2m1 2m2 2m1 2m2

or
1 2 1 2 (7.5.2b)+Q

Here the quantity Q is introduced to indicate the net loss or gain in kinetic energy that
occurs as a result of the collision.

In the case of an elastic collision, no change takes place in the total kinetic energy, so
that Q = 0. If an energy loss does occur, then Q is positive. This is called an exoergic
collision. It may happen that an energy gain occurs. This would happen, for example, if
an explosive was present on one of the bodies at the point of contact. In this case Q is neg-
alive, and the collision is called endoergic.

The study of collisions is of particular importance in atomic, nuclear, and high-energy
physics. Here the bodies involved may be atoms, nuclei, or various elementary particles,
such as electrons and quarks.

Direct Collisions
Let us consider the special case of a head-on collision of two bodies, or particles, in which
the motion takes place enlirely on a single straight line, the x-axis, as shown in Figure 7.5.1.
In this case the momentum balance equation (Equation 7.5.lb) can be written

+ m2±2 = + (7.5.3)

The direction along the line of motion is given by the signs of the ±'s.
To compute the values of the velocities after the collision, given the values before

the collision, we can use the preceding momentum equation together with the energy
balance equation (Equation 7.5.2b), if we know the value of Q. It is often convenient in
this kind of problem to introduce another parameter called the coefficient of restitution.
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Figure 7.5.1 Head-on collision of two particles.

This quantity is defined as the ratio of the speed of separation v' to the speed of approach
v. In our notation may be written as

(7.5.4)

The numerical value of depends primarily on the composition and physical makeup of
the two bodies. It is easy to that in an elastic collision the value of 1. To do this,
we set Q = 0 in Equation 7.5.2b and solve it together with Equation 7.5.3 for the final veloc-
ities. The steps are left as an exercise.

In the case of a totally inelastic collision, the two bodies stick together after collid-
ing, so that =0. For most real bodies has a value somewhere between the two extremes
of 0 and 1. For ivory billiard balls it is about 0.95. The value of the coefficient of restitu-
tion may also depend on the speed of approach. This is particularly evident in the case of
a silicone compound known as Silly Putty. A ball of this material bounces when it strikes
a hard surface at high speed, but at low speeds it acts like ordinary putty.

We can calculate the values of the final velocities from Equation 7.5.3 together with
the definition of the coefficient of restitution (Equation 7.5.4). The result is

= —€m2)±1

(7.5.5)
— (rn1 +€m1)x1 +(m2 —€rn1)r2

Taking the totally inelastic case by setting =0, we find, as we should, that ±j' = 4; that
is, there is no rebound. On the other hand, in the special case that the bodies are of equal
mass in1 = in2 and are perfectly elastic 1, we obtain

= X2 (7.5.6)
= xl

The two bodies, therefore, just exchange their velocities as a result of the collision.
In the general case of a direct nonelastic collision, it is easily verified that the energy

loss Q is related to the coefficient of restitution by the equation

Q=4pv2(1—€2) (7.5.7)
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in which /2 = m1m2/(m1 + m2) is the reduced mass, and V = — I is the relative speed
before impact. The derivation is left as an exercise (see Problem 7.9).

Impulse in Collisions
Forces of extremely short duration in time, such as those exerted by bodies undergoing
collisions, are called impulsive forces. If we confine our attention to one body, or particle,
the differential equation of motion is d(mv)/dt = F, or in differential form d(mv) = F dt.
Let us take the time integral over the interval t = t = t2. This is the time during which
the force is considered to act. Then we have

A(mv) = F dt (7.5.8a)

The time integral of the force is the impulse. It is customarily denoted by the symbol P.
Equation 7.5.8a is, accordingly, expressed as

A(mv) = P (7.5.8b)

We can think of an ideal impulse as produced by a force that tends to infinity but lasts
for a time interval that approaches zero in such away that the integral IF dt remains finite.
Such an ideal impulse would produce an instantaneous change in the momentum and
velocity of a body without producing any displacement.

EXAMPLE 7.5.1

Determining the Speed of a Bullet
A gun is fired horizontally, point-blank at a block of wood, which is initially at rest on a
horizontal floor. The bullet becomes imbedded in the block, and the impact causes the
system to slide a certain distance s before coming to rest. Given the mass of the bullet
m, the mass of the block M, and the coefficient of sliding friction between the block and
the floor /1k' find the initial speed (muzzle velocity) of the bullet.

Solution:
First, from conservation of linear momentum, we can write

m±0

where is the initial velocity of the bullet, and is the velocity of the system (block
+ bullet) immediately after impact. (The coefficient of restitution is zero in this
case.) Second, we know that the magnitude of the retarding frictional force is equal
to (M + m) = (M + m)a, where a = — is the deceleration of the system after impact,
so a = Now, from Chapter 2 we recall that s = for the case of uniform accel-
eration in one dimension. Thus, in our problem

2/1kg
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Solving for ±0, we obtain

112=
m

for the initial velocity of the bullet in terms of the given quantities.
As a numerical example, let the mass of the block be 4 kg, and that of the bullet

10 g = 0.01 kg (about that of a .38 calibre slug). For the coefficient of friction (wood-
on-wood) let us take /1k = 0.4. If the block slides a distance of 15cm = 0.15 m, then we find

±0 = ms2 xO.15 m)112 = 435 rn/s
0.01

7.61 Oblique Collisions and Scattering: Comparison
of Laboratory and Center of Mass Coordinates

We now turn our attention to the more general case of collisions in which the motion is
not confined to a single straight line. Here the vectorial form of the momentum equa-
lions must be employed. Let us study the special case of a particle of mass m1 with initial
velocity (the incident particle) that strikes a particle of mass m2 that is initially at rest
(the target particle). This is a typical problem found in nuclear physics. The momentum
equations in this case are

Pi = + P'2 (7.6.la)
m1v1 = + (7.6.lb)

The energy balance condition is

= (7.6.2a)
2m1 2m1 2m2

or

4 = + + Q (7.6.2b)

Here, as before, the primes indicate the velocities and momenta after the collision, and
Q represents the net energy that is lost or gained as a result of the impact. The quantity
Q is of fundamental importance in atomic and nuclear physics, because it represents the
energy released or absorbed in atomic and nuclear collisions. In many cases the target par-
ticle is broken up or changed by the collision. In such cases the particles that leave the
collision are different from those that enter. This is easily taken into account by assign-
ing different masses, say m3 andm4, to the particles leaving the collision. In any case, the
law of conservation of linear momentum is always valid.

Consider the particular case in which the masses of the incident and target particles
are the same. Then the energy balance equation (Equation 7.6.2a) can be written

= pj2 + + 2mQ (7.6.3)
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where m = m1 = m2. Now if we take the dot product of each side of the momentum equa-
lion (Equation 7.6.la) with itself, we get

= = pj2 (7.6.4)

Comparing Equations 7.6.3 and 7.6.4, we see that

. = mQ (7.6.5)

For an elastic collision (Q =0) we have, therefore,

. = 0 (7.6.6)

so the two particles emerge from the collision at right angles to each other.

Center of Mass Coordinates
Theoretical calculations in nuclear physics are often done in terms of quantities referred
to a coordinate system in which the center of mass of the colliding particles is at rest. On
the other hand, the experimental observations on scattering of particles are carried out
in terms of the laboratory coordinates. We, therefore, consider briefly the problem of con-
version from one coordinate system to the other.

The velocity vectors in the laboratory system and in the center of mass system are
illustrated diagrammatically in Figure 7.6.1. In the figure is the angle of deflection of
the incident particle after it strikes the target particle, and is the angle that the line of
motion of the target particle makes with the line of motion of the incident particle. Both

and 02 are measured in the laboratory system. In the center of mass system, because
the center of mass must lie on the line joining the two particles at all times, both parti-
cles approach the center of mass, collide, and recede from the center of mass in opposite
directions. The angle 0 denotes the angle deflection of the incident particle in the center
of mass system as indicated.

m1 m10 Center of mass
system// //

m1 m2

'r--- V1

/
Laboratory /

system

V2

figure 7.6.1 Comparison of laboratory and center of mass coordinates.
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From the definition of the center of mass, the linear momentum in the center of mass
system is zero both before and after the collision. Hence, we can write

(7.6.7a)

+ = 0 (7.6.Th)

The bars are used to indicate that the quantity in question is referred to the center of mass
system. The energy balance equation reads

(7.6.8)
2m2 2m1 2m2

We can eliminate p2 and from Equation 7.6.8 by using the momentum relations in
Equations 7.6.7a and b. The result, which is conveniently expressed in terms of the
reduced mass, is

11= & + (7.6.9)

The momentum relations, Equations 7.6.7a and b expressed in terms of velocities,
read

m1V1 + m2V2 = 0 (7.6.lOa)
+ = 0 (7.6. lOb)

The velocity of the center of mass is (see Equations 7.1.3 and 7.1.4)

m V1
= (7.6.11)

m1 + m2

Hence, we have

= =
(7.6.12)

m1 + m2

The relationships among the velocity vectors and are shown in Figure 7.6.2.
From the figure, we see that

=i5fsinO
—, (7.6.13)

Figure 7.6.2 Velocity vectors in the laboratory system
and the center of mass system.

Vcm
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Hence, by dividing, we find the equation connecting the scattering angles to be express-
ible in the form

= sinG (7.6.14)
7 + cos 6

in which y is a numerical parameter whose value is given by

= = m1v1
(7.6.15)

iYf Uf(m1+m2)

The last step follows from Equation 7.6.11.
Now we can readily calculate the value of in terms of the initial energy of the

incident particle from the energy equation (Equation 7.6.9). This gives us the neces-
sary information to find yand, thus, determine the relationship between the scatter-
ing angles. For example in the case of an elastic collision Q = 0, we find from the energy
equation that = or = 15i'. This result, together with Equation 7.6.12, yields the
value

(7.6.16)

for an elastic collision.
Two special cases of such elastic collisions are instructive to consider. First, if the mass

in2 of the target particle is very much greater than the mass in1 of the incident particle,
then yis very small. Hence, tan 01 tan 6, or 6. That is, the scattering angles as seen
in the laboratory and in the center of mass systems are nearly equal.

The second special case is that of equal masses of the incident and target particles
= in2. In this case y = 1, and the scattering relation reduces to

sinG 6
tanØ1 = = tan—

1+ cosG 2 (7.6.17)

01 =

That is, the angle of deflection in the laboratory system is just half that in the center of
mass system. Furthermore, because the angle of deflection of the target particle is iv— 6
in the center of mass system, as shown in Figure 7.6.1, then the same angle in the labo-
ratory system is (iv — Therefore, the two particles leave the point of impact at right
angles to each other as seen in the laboratory system, in agreement with Equation 7.6.6.

In the general case of nonelastic collisions, it is left as a problem to show that y is
expressible as

(7.6.18)
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in which T is the kinetic energy of the incident as measured in the laboratory
system.

EXAMPLE 7.6.1
In a nuclear scattering experiment a beam of 4-MeV alpha particles (helium nuclei)
strikes a target consisting of helium gas, so that the incident and the target particles have
equal mass. If a certain incident alpha particle is scattered through an angle of 300 in
the laboratory system, find its kinetic energy and the kinetic energy of recoil of the
target particle, as a fraction of the initial kinetic energy T of the incident alpha particle.
(Assume that the target particle is at rest and that the collision is elastic.)

Solution:
For elastic collisions with particles of equal mass, we know from Equation 7.6.6 that

+02 = 90° (see Figure 7.6.1). Hence, if we take components parallel to and perpen-
dicular to the momentum of the incident particle, the momentum balance equation
(Equation 7.6.la) becomes

p1

0 = sin 01 — cos

in which 3Øo• Solving the preceding pair of equations for the primed components,
we find

= Pi p1 cos30° =

=pjsinØ1

Therefore, the kinetic energies after impact are
2

= = = T =3 MeV
2m1 2m1

-h--- = T =1 MeV
2m2 2m1

EXAMPLE 7.6.2
What is the scattering angle in the center of mass system for Example 7.6.1?

Solution:
Here Equation 7.6.17 gives the answer directly, namely,

8= = 600
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,r 1 . _1(m1l—sinØ1
I2 2 2 )

+ P2 = + 0

2m1 2m2 2m1 2m2

(a) Show that, for the general case of elastic scattering of a beam of particles of mass m1
off a stationary target of particles whose mass ism2, the opening angle i)ii in the lab is
given by the expression

(b) Suppose the beam of particles consists of protons and the target consists of helium
nuclei. Calculate the opening angle for a proton scattered elastically at a lab angle
01=300.

Solution:

(a) Because particle 2 is at rest in the lab, its center of mass velocity i52 is equal in magni-
tude (and opposite in direction) to For elastic collisions in the center of mass,
momentum and energy conservation can be written as

Solving for the magnitudes of the center of mass momenta of particle 1 in terms of
particle 2, we obtain

These expressions can be inserted into the energy conservation equation to obtain

Thus, in an elastic collision, the center of mass velocities of particle 2 are the same
before and after the collision, and both are equal to the center of mass velocity Moreover,
the values of the center of mass velocities of particle 1 are also the same before and
after the collision, and, from conservation of momentum in the center of mass,
they are

Shown below in Figure 7.6.3 is a vector diagram that relates the parameters of elas-
tic scattering in the laboratory and center of mass frames of reference. From the
geometry of Figure 7.6.3, we see that

Pi = P2

—2 —,2
P2 = P2

2j.t

=

m1m2
m1 +m2

—, — m2 —, m2
V1 = V2 =

m1 m1

=01+02
202 = —9

'V 9
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Velocity vectors in

11

frame for elastic scattering. Vcm

Now, applying the law of sines to the upper triangle of the figure, we obtain

=
sinØ1 sin(O—Ø1)

sin(O—Ø1) =
m2

.•. 0, m2

Finally, substituting this last expression for 6 into the one preceding it for and solv-
ing for the opening angle we obtain

(r 9= + + —

— + — sin 012 2

(b) For elastic scattering of protons off helium nuclei at = 300 m1/m2 = -i-, and cu 1010.

(Note: In the case where m1 = m2, q = 900 as derived in the text.)

Motion of a Body with Variable
Mass: Rocket Motion

Thus far, we have discussed only situations in which the masses of the objects under con-
sideration remain constant during motion. In many situations this is not true. Raindrops
falling though the atmosphere gather up smaller droplets as they fall, which increases their
mass. Rockets propel themselves by burning fuel explosively and ejecting the resultant
gasses at high exhaust velocities. Thus, they lose mass as they accelerate. In each case, mass
is continually being added to or removed from the body in question, and this change in
mass affects its motion. Here we derive the general differential equation that describes
the motion of such objects.

So as not to get too confused with signs, we derive the equation by considering the
case in which mass is added to the body as it moves. The equation of motion also applies
to rockets, but in that case the rate of change of mass is a negative quantity. Examine
Figure 7.7.1. A large mass is moving through some medium that is infested with small
particles that stick to the mass as it strikes them. Thus, the larger body is continually gath-
ering up mass as it moves through the medium. At some time t, its mass is m(t) and its
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Figure 7.7.1 A mass m gathering
up a small mass Mi as it moves
through a medium. v(t+&)

velocity is v(t). The small particles are, in general, not at rest but are moving through the
medium also with a velocity that we assume to be u(t). At time t + At, the large moving
object has collided with some of these smaller particles and accumulated an additional
small amount of mass Am. Thus, its mass is now m(t + At) = m(t) + Am and its velocity
has changed to v(t + At). In the small time interval At, the change (if any) in the total linear
momentum of the system is

= (Ptotai)t+& (Ptotai)t (7.7.1)

This change can be expressed in terms of the masses and velocities before and after the
collision

AP = (m + Am)(v + Av) — (my + u Am) (7.7.2)

Because the velocity of Am relative tom is V = u — v, Equation 7.7.2 can be expressed as

AP=mAv+AmAv-VAm (7.7.3)

and on dividing by At we obtain

AP Av Am—=(m+Am)—-—V— (7.7.4)
At At At

In the limit as At —* 0, we have

(7.7.5)
The force represents any external force, such as gravity, air resistance, and so forth
that acts on the system in addition to the impulsive force that results from the interaction
between the masses m and Am. If =0, then the total momentum P of the system is a
constant of the motion and its net change is zero. This is the case for a rocket in deep space,
beyond the gravitational influence of any planet or star, where is essentially zero.

We now apply this equation of motion to two special cases in which mass is added to
or lost from the moving body. First, suppose that, as we have described, the body is falling
through a fog or mist so that it collects mass as it goes, but assume that the small droplets
of matter are suspended in the atmosphere such that their initial velocity prior to accre-
tion is zero. In general, this will be a good approximation. Hence, V = —v, and we obtain

= mv+vm = (7.7.6)

iSjn
u(r)
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for the equation of motion. It applies only if the initial velocity of the matter that is being
swept us is zero. Otherwise, the more general Equation 7.7.5, must be used.

For the second case, consider the motion of a rocket. The sign of iii is negative
because the rocket is losing mass in the form of ejected fuel. The term Vm in Equation 7.7.5
is called the thrust of the rocket, and its direction is opposite the direction of V, the rel-
ative velocity of the exhaust products. Here, we solve the equation of motion for the sim-
plest case of rocket motion in which the external force on it is zero; that is, the rocket is
not subject to any force of gravity, air resistance, and so on. Thus, in Equation 7.7.5,
Fext 0, and we have

my = Vm (7.7.7)

We can now separate the variables and integrate to find v as follows:

fdV=J\Tdm (7.7.8)

If we assume that V is constant, then we can integrate between limits to find the speed
as function of m:

JV
dv =

V0 m0 m
(7.7.9)

m0v = v0 +Vln—
m

Here m0 is the initial mass of the rocket plus unburned fuel, m is the mass at any time,
and V is the speed of the ejected fuel relative to the rocket. Owing to the nature of the
logarithmic function, the rocket must have a large fuel-to-payload ratio to attain the large
speeds needed for launching satellites into space.

EXAMPLE 7.7.1

Launching an Earth Satellite from Cape Canaveral
We know from Example 6.5.3 that the speed of a satellite in a circular orbit near Earth
is about 8 km/s. Satellites are launched toward the east to take advantage of Earth's
rotation. For a point on the Earth near the equator the rotational speed is approxi-
mately REarth (DEarth, which is about 0.5 km/s. For most rocket fuels the effective ejec-
tion speed is of the order of 2 to 4 km/s. For example, if we take V = 3 km/s, then we
find that the mass ratio calculated from Equation 7.7.9 is

m0 25)=e. =12.2

to achieve orbital speed from the ground. Thus, only about 8% of the total initial mass
m0 is payload.
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Multi-Stage Rockets
Example 7.7.1 demonstrates that a large amount of fuel is necessary to put a small pay-
load into low earth orbit (LEO) even if the effects of gravity and air resistance are absent.
Neglecting air resistance is not a bad approximation because careful shaping of the rocket
can greatly minimize its effect. However, as you most assuredlly would suspect, we cannot
ignore the effect of gravity because it greatly magnifies the problem of putting something
into orbit.

The equation of motion of the rocket with gravity acting is given by Equation 7.7.5

- = mg (7.7.10)

Choosing the upward direction as positive and rearranging terms, we get

(7.7.11)
V m V

For the rocket to achieve the first term on the right of Equation 7.7.11 must exceed
the second (remember, dm is negative); in other words, the rocket must eject a lot of
matter, dm, at high exhaust velocity V The reciprocal of the constant g/V in the second
term is a "parameter of goodness" for a given type of rocket and has been given a special
name, the Ic impulse ; of the rocket engine.

= (7.7.12)
g

It has the dimensions of time, and its value depends on the exhaust velocity of the rocket.
This, in turn, depends primarily on the thermodynamics of what goes on inside the
rocket's combustion chamber and the shape of the rocket nozzle. A well-designed chem-
ical rocket that works by rapid oxidation of a fuel typically has an exhaust velocity of
about 3000 m/s where the average molecular weight of the combustibles is about 30. Thus,

= V/g 300s.
We now integrate Equation 7.7.11 during the fuel burn up to the time of burnout

to find the final velocity attained by the rocket.

1 Vf mfdm 1 B

dV=_j•mo dt (7.7.13a)

Completing the integration, we get

v mR+m +mF
= ln — (7.7.13b)

V mR+mP
The masses in the above equation are mR = mass of the rocket, = mass of the payload,
and mF = mass of the fuel (plus oxidizer).

Solving Equation 7.7.13b for the mass ratio, we get

mR +mF
= (7.7.14)

mR +mp
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The queslion of interest here is how much fuel is needed to boost the rocket and payload
into LEO? The final velocity of the rocket must be about 8 km/s. Solving for the mass of
the fuel relalive to the mass of the rocket and its payload, we get

(7.7.15)
mR +

The burnout lime of a rocket lifling a payload into LEO is about 600 s. Putling the rele-
vant numbers into Equation 7.7.15 yields the result

—1 105
mR +mp

In other words, it takes about 105 kg of fuel to place 1 kg of stuff into orbit! This ratio
is larger than that which is typically required. For example, the liftoff weight of the
Saturn V was about 3.2 million kg and it could put 100,000 kg into orbit. This is a ratio
of about 32 kg of fuel for every kilogram of orbital stuff. Why is our result a factor of 3
larger?

Saturn V used a more efficient, two-stage rocket to launch a payload into LEO. The
tanks that hold the fuel for the first stage are jettisoned after the first stage burn is com-
pleted; thus, this now useless mass is not boosted into orbit, which greatly reduces the
overall fuel requirement. Let's take a look at Equation 7.7.14 to see how this works. We
denote the mass ralio by the symbol, p

mR+m
= P (7.7.16)

mR +mp

We assume that the mass ralio of the first stage is equal to that of the second P2 and
that the burnout limes t51 and 'r52 for each stage are identical. We can then calculate the
final velocities achieved by each stage from Equalion 7.7.13b

(7.7.17)

and

Vp--Vp =lnp_!P- (7.7.18)

Solving for Vp gives

= (7.7.19)

Solving for the fuel to rocket and payload mass ratio as before gives

I[2v (7.7.20)
mR +
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Putting in the numbers, we get

mF
mR +

27 (7.7.21)

Thus, it takes only about 27 kg of fuel to put 1 kg of stuff into orbit using a two-stage
rocket. Clearly, there is an enormous advantage to staging as was demonstrated in
Saturn V.

The Ion Rocket
Chemical rockets use the thermal energy released in the explosive oxidation of the fuel
in the rocket motor chamber to eject the reactant products out the rear end of the rocket
to propel it forward. In an ion rocket, such as NASA'S Deeip Space j,9 atoms of xenon gas
are stripped of one of their electrons, and the resulting positive ions are accelerated
by an electric field in the rocket motor. These ejected ions impart a forward momentum
to the rocket exactly in the same way as described by Equation 7.7.7. There are two
essential differences between ion and chemical rockets:

• The exhaust velocity of an ion rocket is about 10 times larger than that of a chem-
ical rocket, which gives a larger specific impulse (see Equation 7.7.12)

• The mass ejected per unit time, th, is much smaller in ion rockets, which gives a
much smaller thrust (the term Vrh in Equation 7.7.7).

These differences crop up because, even though the electrostatic acceleration of ions is
more efficient than thermal acceleration by chemical explosions, the density of ejected
ions is much less than the density of the ejected gasses. The upshot is that an ion rocket
is more efficient than a chemical rocket in the sense that it takes much less fuel mass to
propel the rocket to some desired speed, but the acceleration of the rocket is quite gentle,
so that it takes more time to attain that speed. This makes ion rockets more suitable for
deep space missions to, say, comets and asteroids and, perhaps, ultimately, to nearby star
systems! Indeed, one of the purposes of NASA'S Deep Space 1 mission is to test this
hypothesis. Here we discuss its propulsion system to see what has been achieved so far
with this new technology.

The electrostatic potential through which the ions were accelerated, was
1280 volts. The ions were ejected from the 0.3-meter thruster through a pair of focusing
molybdenum grids. We can estimate the maximum possible escape velocity of these ions
by noting that charged particles in an electrostatic potential C1e accelerate and gain kinetic
energy by losing electrostatic potential energy e4e where e is their electric charge. The
electrostatic potential energy of a charged particle in an electric field is analogous to the
gravitational potential energy m4 (Equation 6.7.6) of a particle in a gravitational field.
Thus, we have

= (7.7.22)

9See the website http:llnmp.jpl.nasa.gov/dsl/tech/ionpropfaq.html for a discussion of NASA's New Millennium
Project, Deep Space 1 mission.
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where m is the mass of a ion. Solving for the escape velocity, we get

= (7.7.23)

Putting in numbers:'°

m 131 AMU 131x1.66x1027 kg = 2.17x1025 kg
e = 1.6 x 1019 C (7.7.24)

rn/s

Thus, the maximum possible specific impulse of the ion rocket is

V 4.3xlO4mIs 3

= g = 9.8 rn/s2
= 4.4 x 10 S (7.7.25)

In fact, the specific impulse of Deep Space I ranges between 1900 s and 3200 s depend-
ing upon throtfie power. The maximum calculated here assumes that all the available power
accelerates the ions with 100% efficiency and ejects them exactly in the backward direc-
tion out the rear end of the rocket, which is virtually impossible to do. The specific
impulse of Deep Space I is about 10 times greater than that of Saturn V.

We now calculate the thrust of Deep Space I, again assuming that all available power
is converted into the ejected ion beam with 100% efficiency The maximum available power
on Deep Space I is P = 2.5 kW. Thus, the rate, at which ions are ejected can be
calculated from the expression

P = E = (7.7.26)

Because is the potential energy lost in accelerating a single ion, the power consumed
is equal to the potential energy lost per unit time to all the accelerated ions. The rate at
which mass is ejected, ih, is equal to the mass of each ion times Z'i. Thus,

mP (2.17 x 10_25 kg)(2500 J/s)m=mN=—= =2.6x10 kg/s (7727)
eCI)e (1.6 x 10' C)(1280 V)

where we have used the fact that 1 C x 1 V 1 J. The maximum thrust of the ion rocket
is thus,

Thrust = Vrh = (4.3 x i04 m/s)(2.6 x kg/s) = 0.114 N

In fact, the maximum thrust achieved by Deep Space I is 0.092 N. We can compare this
with the thrust developed by Saturn V. Saturn V ejected about 11,700 kg/s. Thus,

Thrust(Saturn V) Vñi(Saturn V) = (3000 m/s)(1 1,700 kg/s)
= 3 8 < 108

Thrust(Deep Space I) Vm(Deep Space I) 0.092 N

10 . —27An AMU is an atomic mass unit. Itis equal to 1.66 x 10 kg. The unit of electric charge is the Coulomb (C).
The charge of the electron is —1.6 x C; thus, the charge of a singly charged positive ion is +1.6 x C.
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We conclude that ion rockets are not useful for launching payloads from Earth but are
suitable for deep space missions starting from Earth orbit in which efficient but gentle
propulsion systems can be used.

Problems
7.1 A system consists of three particles, each of unit mass, with positions and velocities as follows:

r1=i+j v1=2i
r2=j+k v2=j
r3=k v3=i+j+k

Find the position and velocity of the center of mass. Find also the linear momentum of
the system.

7.2 (a) Find the kinetic energy of the system in Problem 7.1.
(b) Find the value of
(c) Find the angular momentum about the origin.

7.3 A bullet of mass m is fired from a gun of mass M. If the gun can recoil freely and the muzzle
velocity of the bullet (velocity relative to tjie gun as it leaves the barrel) is v0, show that the
actual velocity of the bullet relative to the ground is v0/(1 + y) and the recoil velocity for
the gun is —yv0/(1 + 7) ,where y= mIM.

7.4 A block of wood rests on a smooth horizontal table. A gun is fired horizontally at the block
and the bullet passes through the block, emerging with half its initial speed just before it
entered the block. Show3that the fraction of the initial kinetic energy of the bullet that is
lost as frictional heat is — 7, where y is the ratio of the mass of the bullet to the mass
of the block (7< 1).

7.5 An artillery shell is fired at an angle of elevation of 600 with initial speed v0. At the uper-
most part of its trajectory, the shell bursts into two equal fragments, one of which moves
directly upward, relative to the ground, with initial speed v0/2. What is the direction and
speed of the other fragment immediately after the burst?

7.6 A ball is dropped from a height h onto a horizontal pavement. If the coefficient of restitu-
tion is E, show that the total vertical distance the ball goes before the rebounds cease is
h(1 + E2)/(1 — E2). Find also the total length of lime that the ball bounces.

7.7 A small car of a mass m and initial speed v0 collides head-on on an icy road with a truck of
mass 4m going toward the car with initial speed 1v0. If the coefficient of restitution in the
collision is find the speed and direction of each vehicle just after colliding.

7.8 Show that the kinetic energy of a two-particle system is + i,zv2, where m =m1 + m2,
v is the relative speed, and p is the reduced mass.

7.9 If two bodies undergo a direct collision, show that the loss in kinetic energy is equal to

4pv2(1—€2)

where p is the reduced mass, v is the relative speed before impact, and is the coefficient
of restitution.

7.10 A moving particle of mass m1 collides elastically with a target particle of mass m2, which is
initially at rest. If the collision is head-on, show that the incident particle loses a fraction
4p/m of its original kinetic energy, where p is the reduced mass and m = m1 + in2.


