
—Rene Dugas, A History of Mechanics, Editions du Griffon, Neuchatel, Switzerland, 1955;
synopsis of Leonhard Euler's comments in Theoria motus corporum solidorum seu
rigidorum, 1760

A rigid body may be regarded as a system of particles whose relative positions are fixed, or,
in other words, the distance between any two particles is constant. This definition of a rigid
body is idealized. In the first place, as pointed out in the definition of a particle, there are
no true particles in nature. Second, real extended bodies are not strictly rigid; they become
more or less deformed (stretched, compressed, or bent) when external forces are applied.
For the present, we shall ignore such deformations. In this chapter we take up the study of
rigid-body motion for the case in which the direction of the axis of rotation does not change.
The general case, which involves more extensive calculation, is treated in the next chapter.

8.11 Center of Mass of a Rigid Body
We have already defined the center of mass (Section 7.1) of a system of particles as the
point where

Xcm = Ycm = Zcm = (8.1.1)
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concept of a solid that is
oni, ,. centi a is defined by means of the inertia
alone, the forces to which the solid is subject being neglected. . . . Euler also
defines the moments of inertia—a concept which Huygens lacked and which
considerably simplifies the language—and calculates these moments for
Homogeneous bodies."
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For a rigid extended body, we can replace the summation by an integration over the
volume of the body, namely,

fpxdv _Lpydv Jpzdv 812(. .)fpdv Lpdv Lpk
where p is the density and dv is the element of volume.

If a rigid body is in the form of a thin shell, the equations for the center of mass
become

$ pxds Jpuds fpzds
— s — s — $ (8.1.3)

cm — Ycm — cm —X
$pds fpds

where ds is the element of area and p is the mass per unit area, the integration extend-
ing over the area of the body.

Similarly, if the body is in the form of a thin wire, we have

5 pxdl Jpudl fpzdl
— I — I — 1 (814Ycm

51pd1 51pd1 51pd1

In this case, p is the mass per unit length and dl is the element of length.
For uniform homogeneous bodies, the density factors p are constant in each case and,

therefore, may be canceled out in each of the preceding equations.
If a body is composite, that is, if it consists of two or more parts whose centers of

mass are known, then it is clear, from the definition of the center of mass, that we can
write

= x1m1 +x2m2 +.•• (8.1.5)
m1 +m2

with similar equations for Ycm and Zcm. Here (x1,y1,z1) is the center of mass of the part m1,
and so on.

Symmetry Considerations
If a body possesses symmetry, it is possible to take advantage of that symmetry in
locating the center of mass. Thus, if the body has a plane of symmetry, that is, if each par-
ticle mj has a mirror image of itself relative to some plane, then the center of mass lies
in that plane. To prove this, let us suppose that the xy plane is a plane of symmetry. We
have then

+
Zcm = (8.1.6)

But m, = and = Hence, the terms in the numerator cancel in pairs, and so
Zcm = 0; that is, the center of mass lies in the xy plane.
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dz

a dO

Figure 8.1.1 Coordinates for calculating
the center of mass of a hemisphere. x

Similarly, if the body has a line of symmetry, it is easy to show that the center of mass
lies on that line. The proof is left as an exercise.

Solid Hemisphere
To find the center of mass of a solid homogeneous hemisphere of radius a, we know from

that the center of mass lies on the radius that is normal to the plane face. Choosing
coordinate axes as shown in Figure 8.1.1, we see that the center of mass lies on the z-axis.
To calculate we use a circular element of volume of thickness dz and radius = (a2 — z2)112,

as shown. Thus,

dv = Jr(a2 — z2)dz (8.1.7)

Therefore, 5a22d
3=!a (8.1.8)

p'r(a2 — z2)dz

Hemispherical Shell
For a hemispherical shell of radius a, we use the same axes as in Figure 8.1.1. Again, from
symmetry, the center of mass is located on the z-axis. For our element of surface ds, we
choose a circular strip of width dl = adO. Hence,

ds = 2rrdl = 2r(a2 — z2)112ad0

o = dO = (a2 — z2)"2dz (8.1.9)

;.d.s=2,radz
The location of the center of mass is accordingly given by

ja
dz

(8.1.10)

5o
p2iradz



Figure 8.1.2 Coordinates for calculating
the center of mass of a wire bent into the
form of a semicircle.

Semicircle

and

Hence,

In the case of a uniform semicircular lamina, the center of mass is on the z-axis
(Figure 8.1.2). As an exercise, the student should verify that

4a
zcm

Solid Cone of Variable Density:
Numerical Integration

(8.1.14)

Sometimes we are confronted with the unfortunate prospect of having to find the center
of mass of a body whose density is not uniform. In such cases, we must resort to numer-
ical integration. Here we present a moderately complex case that we will solve numeri-
cally even though it can be solved analytically. We do this to illustrate how such a calculation
can be easily carried out using the tools available in Mat hematica.

Consider a solid, "unit" cone bounded by the conical surface z2 = + y2 and the plane
z = 1 as shown in Figure 8.1.3, whose mass density function is given by

p(x,y,z) = +y2 (8.1.15)
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To find the center of mass of a thin wire bent into the form of a semicircle of radius a, we
use axes as shown in Figure 8.1.2. We have

dl=ad9 (8.1.11)

z=asinø (8.1.12)

sinO)adO 2a— —— '8113cm —lpadO
Jo

Semicircular Lamina



Figure 8.1.3 Solid cone whose
surface is given by the curve
z2 = + y2 and z = 1.
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Mx!, zsjx2+y2 dzdydx

1
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The first moments of the mass are given by the integrals

The center of mass of this cone can be calculated by solving the integrals given in
Equation 8.1.2. The mass of the cone is given by

dzdydx (8.1.16)

Notice that the limits of integration over the variable y depend on x and that the limits of
integration over z on both x andy. Because this integral is symmetric about both
the x and y axes, it simplifies to

(8.1.17)

(8.1.18a)

(8.1. 18b)

(8.1.18c)

(8.1.19)

The location of the center of mass is then

, , =
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The first moments of the mass about the x andy axes must vanish because, again, the mass
distribution is symmetric about those axes. This is reflected in the fact that the integrals
in Equations 8.1. 18a and b are odd functions and, therefore, vanish. Thus, the oniy
integrals we need evaluate are those in Equations 8.1.17 and 8.1 .18c.

We performed these integrations numerically by invoking Mathematica's Nintegrate
function. The call to this function for a three-dimensional integral is

= Nlntegrate [Integrand, {x, {y, Ymin' Ymax}' {z, Zmin,

where the arguments are appropriate for M or and should be self-explanatory. The
output of the two necessary calls yield the values: M = 0.523599 and = 0.418888. Thus,
the coordinates of the center of mass are

= (0,0,0.800017) (8.1.20)

We leave it as an exercise for the ambitious student to solve this problem analytically.

8.21 Rotation of a Rigid Body about
a Fixed Axis: Moment of Inertia

The simplest type of rigid-body motion, other than pure translation, is that in which the
body is constrained to rotate about a fixed axis. Let us choose the z- axis of an appropriate
coordinate system as the axis of rotation. The path of a representative particle m, located
at the point (x1, yj, is then a circle of radius + = centered on the z-axis.
A representative cross section parallel to the xy plane is shown in Figure 8.2.1.

The speed of particle i is given by

v, = = + (8.2.1)

where w is the angular speed of rotation. From a study of Figure 8.2.1, we see that the
velocity has components as follows:

±2 = =
= = 0); (8.2.2)
= 0

x

Figure 8.2.1 Cross section of a rigid body
rotating about the z-axis. (The z-axis is out of
the page.)
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where is defined as shown in Figure 8.2.1. Equations 8.2.2 can also be obtained by
extracting the components of the vector equation

(8.2.3)

where o = kw.
Let us calculate the kinetic of rotation of the body. We have

= = = (8.2.4)

where

(8.2.5)

The quantity defined by Equation 8.2.5, is called the moment of inertia about the
z-axis.

To show how the moment of inertia further enters the picture, let us next calculate
the angular momentum about the axis of rotation. Because the angular momentum of a
single particle is, by definition, rj X the z-component is

— y1±2) = + = (8.2.6)

where we have made use of Equations 8.2.2. The total z-component of the angular
momentum, which we call is then given by summing over all the particles, namely,

= = 'ZC° (8.2.7)

In Section 7.2 we found that the rate of change of angular momentum for any system is
equal to the total moment of the external forces. For a body constrained to rotate about
a fixed axis, taken here as the z-axis, then

N (828)Zdt cit

where is the total moment of all the applied forces about the axis of rotation (the
component of N along the z-axis). If the body is rigid, then is constant, and we can
write

(8.2.9)

The analogy between the equations for translation and for rotation about a fixed axis is
shown in the following table:

Translation along x-axis Rotation about z-axis
Linear momentum = Angular momentum =
Force = Torque =
Kinetic energy T = my2 Kinetic energy = ! 1w2
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Thus, the moment of inertia is analogous to mass; it is a measure of the rotational iner-
tia of a body relative to some fixed axis of rotation, just as mass is a measure of transla-
tional inertia of a body.

8.31 Calculation of the Moment of Inertia
In calculations of the moment of inertia Z for extended bodies, we can replace the
summation by an integration over the body, just as we did in calculation of the center of
mass. Thus, we may write for any axis

I = (8.3.1)

where the element of mass dm is given by a density factor multiplied by an appropriate
differential (volume, area, or length), and r is the perpendicular distance from the element
of mass to the axis of rotation.'

In the case of a composite body, from the definition of the moment of inertia, we may
write

(8.3.2)

where 1,, and soon, are the moments of inertia of the various parts about the particular
axis chosen.

Let us calculate the moments of inertia for some important special cases.

Thin Rod
For a thin, uniform rod of length a and mass m, we have, for an axis perpendicular to the
rod at one end (Figure 8.3.la),

(8.3.3)

The last step follows from the fact that m = pa.
If the axis is taken at the center of the rod (Figure 8.3.lb), we have

= x2pdx = = (8.3.4)

Hoop or Cylindrical Shell
In the case of a thin circular hoop or cylindrical shell, for the central, or symmetry, axis,
all particles lie at the same distance from the axis. Thus,

= ma2 (8.3.5)
where a is the radius and m is the mass.

'In Chapter 9, when we discuss the rotational motion of three-dimensional bodies, the distance between the
mass element dm and the axis of rotation r1 is designed to remind us that the relevant distance is the one per-
pendicular to the axis of rotation.
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z

Axis

0

(a)

x
2

(b)

Figure 8.3.1 Coordinates for calculating the moment of inertia of a rod (a) about one end and
(b) about the center of the rod.

Figure 8.3.2 Coordinates for finding the
moment of inertia of a disc.

Circular Disc or Cylinder
To calculate the moment of inertia of a uniform circular disc of radius a and mass m, we
use polar coordinates. The element of mass, a thin ring of radius r and thickness dr, is
given by

dm=p2irrdr (8.3.6)

where p is the mass per unit area. The moment of inertia about an axis through the center
of the disc normal to the plane faces (Figure 8.3.2) is obtained as follows:

(8.3.7)

The last step results from the relation m = pir a2.
Equation 8.3.7 also applies to a uniform right-circular cylinder of radius a and mass

m, the axis being the central axis of the cylinder.

k—dx 0 —H x
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Figure 8.3.3 Coordinates for finding the
moment of inertia of a sphere.

Sphere
Let us find the moment of inertia of a uniform solid sphere of radius a and mass m about
an axis (the z-axis) passing through the centet We divide the sphere into thin circular discs,
as shown in Figure 8.3.3. The moment of inertia of a representative disc of radius y, from
Equation 8.3.7, is But dm = pity2 dz; hence,

..
ja

1irpy4dz =f 4,rp(a2 —z2 )2dz = irpa5 (8.3.8)

The last step in Equation 8.3.8 should be filled in by the student. Because the mass mis
given by

we have

m =

2 2=1ma
for a solid uniform sphere. Clearly also, 4 = = 4.

Spherical Shell

(8.3.9)

(8.3.10)

The moment of inertia of a thin, uniform, spherical shell can be found very simply by appli-
cation of Equation 8.3.8. If we differentiate with respect to a, namely,

=;itpa4da (8.3.11)

the result is the moment of inertia of a shell of thickness da and radius a. The mass of the
shell is 4ira2p da. Hence, we can write

2 2= Tma (8.3.12)

for the moment of inertia of a thin shell of radius a and mass m. The student should verif5i
this result by direct integration.
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— = irR
2
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v = oiR

Shown in Figure 8.3.4 is a uniform chain of length 1 = 2irR and mass m = M/2 that is
initially wrapped around a uniform, thin disc of radius R and mass M. One tiny piece of
chain initially hangs free, perpendicular to the horizontal axis. When the disc is released,
the chain falls and unwraps. The disc begins to rotate faster and faster about its fixed
z-axis, without friction. (a) Find the angular speed of the disc at the moment the chain
completely unwraps. (b) Solve for the case of a chain wrapped around a wheel whose
mass is the same as that of the disc but concentrated in a thin rim.

Solution:
(a) Figure 8.3.4 shows the disc and chain at the moment the chain unwrapped. The final

angular speed of the disc is 0. Energy was conserved as the chain unwrapped.
Because the center of mass of the chain originally coincided with that of the disc,
it fell a distance 1/2 = jrR, and we have

1 1 2 1 2

I=4MR2

Solving for CD2 gives

— mg(l/2) — mgirR

— + — +

(b) The moment of inertia of a wheel is I = MR2. Substituting this into the preceding
equation yields

2 2g
Ci)

3R

Even though the mass of the wheel is the same as that of the disc, its moment of
inertia is larger, because all its mass is concentrated along the rim. Thus, its angu-
lar acceleration and final angular velocity are less than that of the disc.

Figure 8.3.4 Falling chain attached to disc, free to rotate about
a fixed z-axis.

Chain cm
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Perpendicular-Axis Theorem for a Plane Lamina
Consider a rigid body that is in the form of a plane lamina of any shape. Let us place the
lamina in the xy plane (Figure 8.3.5). The moment of inertia about the z-axis is given by

(8.3.13)

The sum Em1 4 is just the moment of inertia about the y-axis, because z1 is zero for all
particles. Similarly, E1m1 is the moment of inertia 4 about the x-axis. Equation 8.3.13
can, therefore, be written

Iz = jx + ly
This is the perpendicular-axis theorem. In words:

(8.3.14)

The moment of inertia of any plane lamina about an axis normal to the plane of the
lamina is equal to the sum of the moments of inertia about any two mutually perpendi-
cular axes passing through the given axis and lying in the plane of the lamina.

As an example of the use of this theorem, let us consider a thin circular disc in the
xy plane (Figure 8.3.6). From Equation 8.3.7 we have

= = (8.3.15)

In this case, however, we know from symmetry that 4 = Ii,. We must, therefore, have

1x =1y

Figure 8.3.5 The perpendicular-axis theorem for
a lamina.

Figure 8.3.6 Circular disc.

(8.3.16)

V

x
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Figure 8.3.7 The parallel-axis theorem for any
rigid body.

for the moment of inertia about any axis in the plane of the disc passing through the center.
This result can also be obtained by direct integration.

Parallel-Axis Theorem for Any Rigid Body
Consider the equation for the moment of inertia about some axis, say the z-axis,

= + (8.3.17)

Now we can express; and in terms of the coordinates of the center of mass
and the coordinates relative to the center of mass (Figure 8.3.7) as follows:

; + + (8.3.18)

We have, therefore, after substituting and collecting terms,

= (8.3.19)

The first sum on the right is just the moment of inertia about an axis parallel to the z-axis
and passing through the center of mass. We call it The second sum is equal to the mass
of the body multiplied by the square of the distance between the center of mass and the
z-axis. Let us call this distance I That is, 2 = +

Now, from the definition of the center of mass,

= = 0 (8.3.20)

Hence, the last two sums on the right of Equation 8.3.19 vanish. The final result may be
written in the general form for any axis

I = 1cm + m12 (8.3.21)

This is the parallel-axis theorem. It is applicable to any rigid body, solid as well as laminar.
The theorem states, in effect, that:

The moment of inertia of a rigid body about any axis is equal to the moment of inertia
about a parallel axis passing through the center of mass plus the product of the mass of
the body and the square of the distance between the two axes.
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We can use the parallel-axis theorem to calculate the moment of mertia of a uniform cir-
cular disc about an axis perpendicular to the plane of the disc and passing through an edge
(see Figure 8.3.8a). Using Equations 8.3.7 and 8.3.21, we get

I = 4ma2 = (8.3.22)

We can also use the parallel-axis theorem to calculate the moment of inertia of the disc
about an axis in the plane of the disc and tangent to an edge (see Figure 8.3.8b). Using
Equations 8.3.16 and 8.3.21, we get

I = +ma2 = (8.3.23)

As a second example, let us find the moment of inertia of a uniform circular cylinder
of length b and radius a about an axis through the center and perpendicular to the central
axis, namely or in Figure 8.3.9. For our element of integration, we choose a disc of
thickness dz located a distance z from the xy plane. Then, from the previous result for a
thin disc (Equation 8.3.16), together with the parallel-axis theorem, we have

= a2dm + z2dm (8.3.24)

in which dm = piTa2 dz. Thus,

2 1 1= (-4-a + z )dz = + (8.3.25)

But the mass of the cylinder is m = pira2b, therefore,

= = (8.3.26)

Radius of Gyration
Note the similarity of Equation 8.2.5, the expression for the moment of inertia of a rigid
body about the z-axis, to the expressions for center of mass developed in Section 8.1. If we
were to divide Equation 8.2.5 by the total mass of the rigid body, we would obtain the mass-
weighted average of the square of the positions of all the mass elements away from the z-axis.

Figure 8.3.8 Moment of
inertia of a uniform, thin disc a —a
about axes (a) perpendicular to
the plane of the disc and
through an edge and (b) in the
plane of the disc and tangent to
an edge. (a) (b)
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Figure 8.3.9 Coordinates for
finding the moment of inertia of a
circular cylinder.

Thus, moment of inertia is, in essence, the average of the squares of the radial distances
away from the z-axis of all the mass elements making up the rigid body. You can understand
physically why the moment of inertia must depend on the square (or, at least, some even
power) of the distances away from the rotational axis; it could not be represented by a linear
average over all the mass elements (or any average of the odd power of distance). If such
were the case, then a body whose mass was symmetrically distributed about its rotational
axis, such as a bicycle wheel, would have zero moment of inertia because of a term-by-term
cancellation of the positive and negative weighted mass elements in the symmetrical
distribution. An application of the slightest torque would spin up a bicycle wheel into an
instantaneous frenzy, a condition that any bike racer knows is impossible.

We can formalize this discussion by defining a distance k, called the radius of gyration,
to be this average, that is,

k2 = k = /1 (8.3.27)
m Vm

Knowing the radius of gyration of any rigid body is equivalent to knowing its moment of
inertia, but it better characterizes the nature of the averaging process on which the
concept of moment of inertia is based.

For example, we find for the radius of gyration of a thin rod about an axis passing
through one end (see Equation 8.3.3)

2

k = I
= (8.3.28)

Moments of inertia for various objects can be tabulated simply by listing the squares of
their radii of gyration (Table 8.3.1).

x

dz
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Thin rectangular lamina,
sides a and b

Thin circular disc, radius a

Thin hoop (or ring), radius a

Thin cylindrical shell,
radius a, length b

Uniform solid right circular
cylinder, radius a, length b

Thin spherical shell, radius a

Uniform solid sphere,
radius a

Uniform solid rectangular
parallelepiped, sides a,
and c

Through the center, parallel to side b

Through the center, normal to the lamina

Through the center, in the plane of the disc

Through the center, normal to the disc

Through the center, in the plane of the hoop

Through the center, normal to the plane
of the hoop

Central longitudinal axis

Central longitudinal axis

Through the center, perpendicular to
longitudinal axis

Any diameter

Any diameter

Through the center, normal to face ab,
parallel to edge c

a2 +b2
12

a2
4

a2
2

a2
2

2a

2a

a2
2

4 12

8.41 The Physical Pendulum
A rigid body that is free to swing under its own weight about a fixed horizontal axis of
rotation is known as a physical pendulum, or compound pendulum. A physical pendulum
is shown in Figure 8.4.1. Here CM is the center of mass, and 0 is the point on the axis of
rotation that is in the vertical plane of the circular path of the center of mass.

Thin rod, lenght a Normal to rod at its center
12
a2

Normal to rod at one end

a2
12

22

22

a2 +b2
12



Figure 8.4.1 The physical pendulum.

i

f0
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Denoting the angle between the line 0CM and the vertical line OA by 6, the moment
of the gravitational force (acting at CM) about the axis of rotation is of magnitude

mgi sinø

The fundamental equation of motion N = Ith then takes the form —mgi sin 6 = I O

(8.4.1)
I

Equation 8.4.1 is identical in form to the equation of motion of a simple pendulum.
For small oscillations, as in the case of the simple pendulum, we can replace sin 6 by 6:

(8.4.2)

The solution, as we know from Chapter 3, can be written

6= cos (2irf0t —8) (8.4.3)

where is the amplitude and S is a phase angle. The frequency of oscillation is
given by

(8.4.4)

The period is, therefore, given by

(8.4.5)

(To avoid confusion, we have used the frequencyfo instead of the angular frequency
to characterize the oscillation of the pendulum.) We can also express the period in terms
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of the radius of gyration k, namely,

T0 = (8.4.6)

Thus, the period is the same as that of a simple pendulum of length k2/l.
Consider as an example a thin uniform rod of length a swinging as a physical pendulum

about one end: k2 = a2/3, 1= a/2. The period is then

T0 = 2ir = 2ir (8.4.7)

which is the same as that of a simple pendulum of length

Center of Oscillation
By use of the parallel-axis theorem, we can express the radius of gyration k in terms of
the radius of gyration about the center of mass as follows:

(8.4.8)

or

rnk2 = +
(8.4.9a)

Canceling the rn's, we get

k2 = + 12 (8.4.9b)

Equation 8.4.6 can, therefore, be written as

!k2 +12
T0 = I (8.4.10)

gi

Suppose that the axis of rotation of a physical pendulum is shifted to a different
position O'at a distance 1' from the center of mass, as shown in Figure 8.4.1. The period
of oscillation about this new axis is given by

1k2
(8.4.11)

The periods of oscillation about 0 and about 0' are equal, provided

k2 + 12 k2 + 1F2

i =
Cm

1'
(8.4.12)

Equation 8.4.12 readily reduces to

11' = (8.4.13)

The point 0', related to 0 by Equation 8.4.13, is called the center of oscillation for the
point 0. 0 is also the center of oscillation for 0'. Thus, for a rod of length a swinging about
one end, we have = a2/12 and 1= a/2. Hence, from Equation 8.4.13, 1' = a/6, and so
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the rod has the same period when swinging about an axis located a distance a/6 from the
center as it does for an axis passing through one end.

The "Upside-Down Pendulum": Elliptic Integrals
When the amplitude of oscillation of a pendulum is so large that the approximation
sinO = 0 is not valid, the formula for the period (Equation 8.4.5) is not accurate. In
Example 3.7.1 we obtained an improved formula for the period of a simple pendulum by
using a method of successive approximations. That result also applies to the physical
pendulum with 1 replaced by I/mi, but it is still an approximation and is completely
erroneous when the amplitude approaches 1800 (vertical position) (Figure 8.4.2).

To find the period for large amplitude, we start with the energy equation for the
physical pendulum

+mgh = E (8.4.14)

where h is the vertical distance of the center of mass from the equilibrium position, that is,
h =1(1 — cos 0). Let denote the amplitude of the pendulum's oscillation. Then O = 0
when 0 = so that E = mgi(1 — cos The energy equation can then be written

+ mgi(1 — cos 0) = mgl(1 — cos (8.4.15)

Solving for 0 gives

(8.4.16)

(8.4.17)

= (cos O—cos oo)]

Thus, by taking the positive root, we can write

do
9)1/2

Figure 8.4.2 The upside-down pendulum.

h

A
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from which we can, in principle, find t as a function of 0. Also, we note that 8 increases
from 0 to 00 in just one quarter of a complete cycle. The period T can, therefore, be
expressed as

T=4 /1500 dO (8.4.18)
\I2mgl 0 (cosO—cosO0)112

Unfortunately, the integrals in Equations 8.4.17 and 8.4.18 cannot be evaluated in terms
of elementary functions. They can, however, be expressed in terms of special functions
known as elliptic integrals. For this purpose it is convenient to introduce a new variable
of integration which is defined as follows:

sin(0/2) 1 . (0'\sinØ = = — (8.4.19)
sin(80/2) k

2where

k =

Thus, when 8 = 80, we have sin 0 = 1 and so 0 = ir/2. The result of making these
substitutions in Equations 8.4.17 and 8.4.18 yields

= dØ (8.4.20a)
\Imgl 0 (1—k2 sin2 0)1/2

T =4 rTrvI2 dçb (8.4.20b)
0 (1—k2sin20)112

The steps are left as an exercise and involve use of the identity cos 8 = 1 —2 sin2 ().
Tabulated values of the integrals in the preceding expressions can be found in various

handbooks and mathematical tables. The first integral

dçb
= F(k 0) (8.4.21)

0 (1—k2 sin2

is called the incomplete elliptic integral ofthe first kind. In our problem, given a value of
the amplitude 8 a series of steps
involving the definitions of k and 0. We are more interested in finding the period of the
pendulum, which involves the second integral

Jlr/2 dØ = (8.4.22)
0 (1—k2sin2Ø)112 2)

2Note that k defined here is a parameter that characterizes elliptic integrals. It is not the k defined previously
as the radius
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00 0 1.5708=ir/2 T0
100 0.0872 1.5738 1.0019T0
450 0.3827 1.6336 1.0400 T0
90° 0.7071 1.8541 1.1804T0

1350 0.9234 2.4003 1.5281 T0
178° 0.99985 5.4349 3.5236 T0
179° 0.99996 5.2660 4.6002 T0
1800 1 oo oo

1 For more extensive tables and other information on elliptic integrals, consult any treatise on elliptic functions,
such as (1) H. B. Dwight, Tables of Integrals and Other Mathematical Data, The Macmillan Co., New York, 1961;
and (2) M. Abramowitz and A. Stegun, Handbook of Mathematical Functions, Dover Publishing, New York, 1972.

known as the complete elliptic integral of the first kind. (It is also variously listed as K(k)
or F(k) in many tables.) In terms of it, the period is

T = (8.4.23)

Table 8.4.1 lists selected values of F(k, iv/2). Also listed is the period T as a factor multiplied
by the period for zero amplitude: T0 =

Table 8.4.1 shows the trend as the amplitude approaches 1800 at which value the
elliptic integral diverges and the period becomes infinitely large. This means that,
theoretically, a physical pendulum, such as a rigid rod, if placed exactly in the vertical
position with absolutely zero initial angular velocity, would remain in that same unstable
position indefinitely.

EXAMPLE 8.4.1
A physical pendulum, as shown in Figure 8.4.1, is hanging vertically at rest. It is stnick
a sudden blow such that its total energy after the blow is E = 2mgl, where m is the mass
of the pendulum and 1 is the distance of its center of mass to the pivot point. (a) Calculate
the angle of displacement 0 away from the vertical as a function of time. (b) Does the
pendulum reach the "upside-down" configuration, 0 = iv? If so, use your result from part
(a) to calculate how long it takes.

Solution:
(a) We begin by writing down the total energy of the pendulum as in Equation 8.4.15

+mgl(1—cosO) = 2mgl

Amplitude, k = Period,
00 2) T
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Solving for Ô2

2 2mgl 4mgl 200 =—(1+cosO)=————cos —
1 1 2

We introduce the following substitution, y = sin 0/2, to eliminate integrals involving
trigonometric functions and obtain a moderately simple analytic solution.

As Ovaries from 0 to iv, y varies from 0 to 1. We now calculate

= =

where we have used the substitution cos 0/2 = (1 )h12

We now solve for 0 in terms of y and

We can now find a first-order differential equation describing the motion in terms of y

=

The solution is
/(mgi I

y 1, and 0 iv and the pendulum goes "upside-down"— eventually.
Compare this result with the last line in Table 8.4.1.

8.51 The Angular Momentum of a
Rigid Body in Laminar Motion

Laminar motion takes place when all the particles that make up a rigid body move parallel
to some fixed plane. In general, the rigid body undergoes both translational and rotational
acceleration. The rotation takes place about an axis whose direction, but not necessarily
its location, remains fixed in space. The rotation of a rigid body about a fixed axis is a special
case of laminar motion, such as the physical pendulum discussed in the previous section.
A cylinder rolling down an inclined plane is another example. We discuss motion of each
of these types in the sections that follow, but as a prelude to these analyses, we first
develop a theorem about the angular momentum of a rigid body in laminar motion.

We showed in Section 7.2 that the rate of change of the angular momentum of any
system of particles is equal to the net applied torque

(8.5.1)
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y

Figure 8.5.1 Vector position of a particle
in a rigid body in laminar motion. 0

X = X F1 (8.5.2)

where all quantifies are referred to an inertial coordinate system.
What happens, however, if we choose to describe the rotation of a rigid body

(which is a system of particles whose relative positions are fixed) about an axis that might
also be accelerating, such as that which takes place when a ball rolls down an inclined
plane? To take into account such a possibility, we again consider a system of particles,
as in Section 8.2, that is rotating about an axis whose direction is fixed in space.
However, here we allow for the possibility that the axis might be accelerating. We begin
by referring the position of a particle, m1, to the origin, 0, ofan inertial frame of reference
(see Figure 8.5.1). Let the point 0' represent the origin of the axis in question, about which
we wish to refer the rotation of the system of particles. The vectors, r1 and r, denote the
position of the ith particle relative to the points 0 and 0', respectively. We now calculate
the total torque N' about the axis 0'

(8.5.3)

From Figure 8.5.1, we see that

(8.5.4)

and

= + (8.5.5)

In the inertial frame of reference we have

= .j-(rnvi) (8.5.6)

rj'

or

x
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Thus, Equation 8.5.4 becomes

(8.5.7a)

= X + X (8.5.Th)

= x X (8.5.7c)

The step from Equation 8.5.7a to 8.5.Th follows because 'vo is not being summed and,
therefore, may be extracted from the summation with impunity. The minus sign emerges
because of the reversal of the order of the cross product. Extraction of the time deriva-
tive from inside the summation in Equation 8.5.Th to its position outside the summation
in Equation 8.5.7c is permissible because it then generates a term, X that is
the cross product of a vector with itself, which is zero.

The last term on the right in Equation 8.5.7c is the rate of change of the angular
momentum, L', about the 0' axis. Thus, we may rewrite this equation as

N'=—r0 (8.5.8)

in which we have replaced 'v0 with
The equation of torque (8.5.1), thus, cannot be applied directly in its standard form

to a system rotating about an axis that is undergoing acceleration. The correct equa-
tion (8.5.8) differs from Equation 8.5.1 by the presence of the extra term on the left.

However, this added term vanishes when any of three possible conditions are satis-
fied, as schematized in Figure 8.5.2a, b, and c:

1. The acceleration, of the axis of rotation, 0', vanishes (Figure 8.5.2a).

2. The point, 0', is the center of mass of the system of particles that make up the rigid
body. Under this condition, the term, = 0 by definition (Figure 8.5.2b).

3. The 0' axis passes through the point of contact between the cylinder and the
plane. The vector, represented by the sum, passes through the center of
mass. We can see this by noting that = where M = is the total
mass and is the vector position of the center of mass relative to 0'. Therefore, if
the vector also passes through the center of mass, then their cross product will
vanish (Figure 8.5.2c)

We will see in the next section that this last condition proves useful when solving prob-
lems involving rigid bodies that are rolling, but not sliding!

Condition 2 above should be emphasized. The equation of torque for a rigid body
undergoing laminar motion can always be expressed in the form given by Equation 8.5.1,

we take torques and calculate angular momentum about an axis that passes through the
center of mass. We write the equation here using appropriate notation to emphasize that
it must be applied by summing torques about an axis that passes through the center of



Figure 8.5.2 (a) A physical pendulum swinging about a fixed axis 0'. The acceleration of the
axis is zero. (b) A cylinder rolling down an inclined plane. An axis 0' through its center of
mass is accelerating, but Equation 8.5.9 may be used to describe its rotational motion. (c) The
same cylinder as in (b) but the axis 0' through the point of contact between the cylinder and the
plane is accelerating, even though it is instantaneously at rest (no slipping). (The net tangential
acceleration of the axis is zero because a is the angular acceleration of the
cylinder and b is its radius. The net acceleration of the axis is, therefore, its centripetal
acceleration, ac, directed toward the center of mass.)

mass of the rigid body

If in doubt, use this equation!

8.61 Examples of the Laminar Motion of a Rigid Body
To sum up, if a rigid body undergoes a laminar motion, the motion is most often specffied
as a translation of its center of mass and a rotation about an axis that passes through the center
of mass and whose direction is fixed in space. Sometimes though, some other axis is a more
appropriate choice. Such situations are usually obvious, as in the case of the physical pen-
dulum, whose motion is a rotation about the fixed axis that passes through its pivot point.

The fundamental equation that governs the translation of a rigid body is

F = = = (8.6.1)

where F is the vector sum of all the external forces acting on the body, m is its mass, and
is the acceleration of its center of mass.
The fundamental equation that governs the rotation of the body about an axis 0' that

satisfies one of the conditions 1 to 3 given in Section 8.5 is

= = (8.6.2)

If an axis of rotation, other than that which passes through the center of mass, is chosen
to describe the rotational motion, care should be taken in considering whether condition
1 or 3 is satisfied. If not, then the more general form of the equation of torque given by
Equation 8.5.8 must be used instead.
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(a)

Øb
(b) (c)

= = (8.5.9)



Figure 8.6.1 Body rolling down an
inclined plane.

Body Rolling Down an Inclined Plane
As an illustration of laminar motion, we study the motion of a round object (cylinder, ball,
and soon) rolling down an inclined plane. As shown in Figure 8.6.1, three forces are acting
on the body. These are (1) the downward force of gravity, (2) the normal reaction of the
plane FN, and (3) the frictional force parallel to the plane Choosing axes as shown,
the component equations of the translation of the center of mass are

=mg sin 9—Fe
= —mg cos U + FN

where 0 is the inclination of the plane to the horizontal. Because the body remains in
contact with the plane, we have

= constant (8.6.5a)

FN = mg cosU (8.6.6)

The only force that exerts a moment about the center of mass is the frictional force
The magnitude of this moment is Fpa, where a is the radius of the body. Hence, the

rotational equation (Equation 8.6.2) becomes

= (8.6.7)

To discuss the problem further, we need to make some assumptions regarding the
contact between the plane and the body. We solve the equations of motion for two
cases.

348 CHAPTER 8 Mechanics of Rigid Bodies: Planar Motion

(8.6.3)
(8.6.4)

Hence,

Therefore, from Equation 8.6.4,

= 0 (8.6.5b)
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Motion with No Slipping
If the contact is very rough so that no slipping can occur, that is, if   4USFN, where is
the coefficient of static friction, we have the following relations:

• (8.6.8a)= açb = aw
(8.6.8b)= açb = aw

where 0 is the angle of rotation. Equation 8.6.7 can then be written

I.
= (8.6.9)

Substituting this value for into Equation 8.6.3 yields

=mg (8.6.10)

Solving for we find

= mg sinG = g sine
(86 11)

where is the radius of gyration about the center of mass. The body, therefore, rolls
down the plane with constant linear acceleration and with constant angular acceleration
by virtue of Equations 8.6.8a and b.

For example, the acceleration of a uniform cylinder = a2/2) is

gsinG 2

=
sinG (8.6.12)

whereas that of a uniform sphere = 2a2/5) is

gsinO
Xcm

= 1 + (!) =
g sinG (8.6.13)

EXAMPLE 8.6.1
Calculate the center of mass acceleration of the cylinder rolling down the inclined plane
in Figure 8.6.1 for the case of no slipping. Choose an axis 0' that passes through the point
of contact as in Figure 8.5.2c.

Solution:
As previously explained, the choice of this axis satisfies condition 3 given in Section 8.5
and we can use Equation 8.6.2 directly. The torque acting about 0' is

= mg a sine
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The moment of inertia of the cylinder about this point (see Equation 8.3.22) is

=

Because there is no slipping, the relationship between the angular velocity of the cylin-
der about the axis 0' and the center of mass velocity is

=aØ

(Note: this is the same relationship that connects the angular velocity of the cylin-
der with the tangential velocity of any point on its surface relative to the center
of mass.)

Therefore, the rotational equation of motion gives

from which it immediately follows that

Xcm =;gsino

Energy Considerations
The preceding results can also be obtained from energy considerations. In a uniform
gravitational field the potential energy V of a rigid body is given by the sum of the potential
energies of the individual particles, namely,

V = = (8.6.14)

where is the vertical distance of the center of mass from some (arbitrary) reference
plane. Now if the forces, other than gravity acting on the body do no work, then the motion
is conservative, and we can write

(8.6.15)

where T is the kinetic energy.
In the case of the body rolling down the inclined plane (see Figure 8.6.1), the kinetic

of translation is 4 and that of rotation is Lw2, so the energy equation reads

= E (8.6.16)

But Co = and hcm = sin 6. Hence,

sinG = E (8.6.17)

In the case of pure rolling motion, the frictional force does not appear in the
equation because no mechanical energy is converted into heat unless slipping occurs. Thus,
the total E is constant. Differentiating with respect to t and collecting terms yields

m±cmicm[i+!4J_mg±cin sinG = 0 (8.6.18)
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Canceling the common factor Xcm (assuming, of course, that 0) and solving for
we find the same result as that obtained previously using forces and moments

(Equation 8.6.11).

Occurrence of Slipping
Let us now consider the case in which the contact with the plane is not perfectly rough
but has a certain coefficient of sliding friction If slipping occurs, then the magnitude
of the frictional force is given by

= IIkFN = cos 6 (8.6.19)

The equation of translation (Equation 8.6.3) then becomes

= mg sin 9— cos 8 (8.6.20)

and the rotational equation (Equation 8.6.7) is

Icmth = cos9 (8.6.21)

From Equation 8.6.20 we see that again the center of mass undergoes constant
acceleration:

= g(sin 8— 11k cos 8) (8.6.22)

and, at the same time, the angular acceleration is constant:

= =
(8.6.23)

Let us integrate these two equations with respect to t, assuming that the body starts
from rest, that is, at t = 0, ±cm = 0,0 = 0. We obtain

= g(sin 8— cos 8)t (8.6.24)

(8.6.25)

Consequently, the linear speed and the angular speed have a constant ratio, and we can
write

±cm = (8.6.26)

where

7= (8.6.27)
Ilka a )

Now a Co cannot be greater than Xcm, so y cannot be less than unity. The limiting case,
that for which we have pure rolling, is given by = aw, that is,

7=1
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Solving for /1k in Equation 8.6.27 with 7=1, we find that the critical value of the coefficient
of friction is given by

tan 6
=

(8.6.28)

(Actually this is the critical value for the coefficient of static friction If is greater
than that given in Equation 8.6.28, then the body rolls without slipping.

For example, if a ball is on a 45° plane, it will roll without slipping, provided is
greater than tan 45°I(1 + or

EXAMPLE 8.6.2
A small, uniform cylinder of radius R rolls without slipping along the inside of a large,
fixed cylinder of radius r > R as shown in Figure 8.6.2. Show that the period of small
oscillations of the rolling cylinder is equivalent to that of a simple pendulum whose
length is 3(r — R)/2.

Solution:
A key to an easy solution hinges on the realization that the total of the rolling
cylinder is a constant of the motion. There is no relative motion between the two surfaces
because there is no slipping. In other words, 0' and 0 coincide when the small cylinder
is at the equilibrium position and the arc lengths O'P and OP are identical. The force
of friction F, therefore, does not remove the from the rolling cylinder, nor does
the normal force N do any work. It generates no torque because its line of action always
passes through the center of mass, and it does not affect the translational kinetic

Figure 8.6.2 Small
cylinder rolling without
slipping on the inside of
a large, fixed cylinder. 0
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because it is always directed perpendicular to the motion of the center of the mass. The
only force that does do work is the conservative force of gravity, mg. Thus, the ene®'
of the cylinder is conserved, and we can solve the problem by setting its lime derivative
equal to zero. The total energy of the cylinder is

E = T+V= 4cco2 4mvL +mgh

where h is the height of the cylinder above that at its equilibrium position, Vcm is the
speed of its center of mass, and 'cm is the moment of inertia about its center of mass
(see Figure 8.6.2).

From the figure, we see that for small oscillations

h = (r — R)(1 — cos 9) (r — R)

and because the cylinder rolls without slipping, we have

= = (r — R) a
R R

Inserting these relations for h and oi into the energy equation gives

E =

On taking the derivative of the preceding equation and setting the result equal to zero,
we obtain

E = = 0

and cancelling out common terms yields

= 0

The moment of inertia of the cylinder about its center of mass is 4,,. = mR2/2, and on
substituting it into the preceding equation yields the equation of motion of the cylinder
for small excursions about equilibrium

g 8=0
(fl(r—R)

This equation of motion is the same as that of a simple pendulum of length 3(r — R)/2.
Thus, their periods are identical.

(The student might wish to solve this problem using the method of forces and
torques. The relevant forces acting on the rolling cylinder are shown in the insert in
Figure 8.6.2.)
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8.71 Impulse and Collisions Involving Rigid Bodies
In the previous chapter we considered the case of an impulsive force acting on a particle.
In this section we extend the notion of impulsive force to the case of laminar motion of
a rigid body. First, we know that the translation of the body, assuming constant mass, is
governed by the general equation F = m dv,,,jdt, so that if F is an impulsive type of force,
the change of linear momentum of the body is given by

(8.7.1)

Thus, the result of an impulse P is to produce a sudden change in the velocity of the center
of mass by an amount

= (8.7.2)

Second, the rotational part of the motion of the body obeys the equation N = L =
Idw/dt, so the change in angular momentum is

5 Ndt = lAO) (8.7.3)

The integral I N dt is called the rotational impulse. Now if the primary impulse P is
applied to the body in such a way that its line of action is a distance 1 from the reference
axis about which the angular momentum is calculated, then N = Fl, and we have

5Ndt=Pl (8.7.4)

Consequently, the change in angular velocity produced by an impulse P acting on a rigid
body in laminar motion is given by

= (8.7.5)

For the general case of free laminar motion, the reference axis must be taken through the
center of mass, and the moment of inertia I = On the other hand, if the body is
constrained to rotate about a fixed axis, then the rotational equation alone suffices to
determine the motion, and I is the moment of inertia about the fixed axis.

In collisions involving rigid bodies, the forces and, therefore, the impulses that the
bodies exert on one another during the collision are always equal and opposite. Thus, the
principles of conservation of linear and angular momentum apply.

Center of Percussion: The "Baseball Bat Theorem"
To illustrate the concept of center of percussion, let us discuss the collision of a ball of
mass m, treated as a particle, with a rigid body (bat) of mass M. For simplicity we assume
that the body is initially at rest on a smooth horizontal surface and is free to move in
laminar-type motion. Let P denote the impulse delivered to the body by the ball. Then
the equations for translation are

(8.7.6)
—P=mv1—mv0 (8.7.7)
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Figure 8.7.1 Baseball colliding with a bat.

— k2
M cm

I

1'

where v0 and v1 are, respectively, the initial and final velocities of the ball and Vcm is the
velocity of the mass center of the body after the impact. The preceding two equations imply
conservation of linear momentum.

Because the body is initially at rest, the rotation about the center of mass, as a result
of the impact, is given by

Pt'
(0 = -j—— (8.7.8)

cm

in which 1' is the distance O'C from the center of mass C to the line of action of F, as shown
in Figure 8.7.1. Let us now consider a point 0 located a distance 1 from the center of mass
such that the line CO is the extension of O'C, as shown. The (scalar) velocity of 0 is
obtained by combining the translational and rotational parts, namely,

P Fl'
V0 = Vcm (01 = 1=

—
(8.7.9)

cm 'S. cm)

In particular, the velocity of 0 will be zero if the quantity in parentheses vanishes, that
is, if

(8.7.10)

where kcm is the radius of of the body about its center of mass. In this case the
point 0 is the instantaneous center of rotation of the body just after impact. 0' is called
the center of percussion about 0. The two points are related in the same way as the centers
of oscillation, defined previously in our analysis of the physical pendulum (Equation 8.4.13).
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Anyone who has played baseball knows that if the ball hits the bat in just the right
spot there is no "sting" on impact. This "right spot" is just the center of percussion about
the point at which the bat is held.

EXAMPLE 8.7.1
Shown in Figure 8.7.2 is a thin rod of length b and mass m suspended from an endpoint
on a frictionless pivot. The other end of the rod is struck a blow that delivers a horizontal
impulse F' to the rod. Calculate the horizontal impulse P delivered to the pivot by the
suspended rod.

Solution:
First, we calculate the velocity of the center of mass after the blow by noting that the
net horizontal impulse delivered to the rod is equal to its change in momentum.

P' — P =

Now we consider the resulting rotation of the rod about the pivot point (the choice of
this axis satisfies condition 1 in Section 8.5). The moment of inertia of the rod about an
axis passing through that point is given by Equation 8.3.3

Now we calculate the angular velocity of the rod about the pivot using Equation 8.7.8

P'b=Io
But the velocity of the center of mass and the angular velocity are related according to

Thus, we can write

b
Vcm

F' — P = m Co = m [!kl =
2 2L1J 2

Figure 8.7.2 Thin rod suspended from frictionless pivot.

P

b
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Therefore,

p =

The impulse delivered by the pivot to the rod is in the same direction as the impulse
delivered by the horizontal blow, to the right in Figure 8.7.2. The impulse delivered by
the rod to the pivot is in the opposite direction, to the left in the figure.

Problems
8.1 Find the center of mass of each of the following:

(a) A thin wire bent into the form of a three-sided, block-shaped "u" with each segment of
equal length b

(b) A quadrant of a uniform circular lamina of radius b
(c) The area bounded by parabola y = x2/b and the line y = b
(d) The volume bounded by paraboloid of revolution z = (x2 + y2)/b and the plane z = 1,

(e) A solid uniform right circular cone of height b
8.2 The linear density of a thin rod is given by p = cx, where c is a constant and x is the distance

measured from one end. If the rod is of length b, find the center of mass.
8.3 A solid uniform sphere of radius a has a spherical cavity of radius a/2 centered at a point a/2

from the center of the sphere. Find the center of mass.
8.4 Find the moments of inertia of each of the objects in Problem 8.1 about their symmetry axes.
8.5 Find the moment of inertia of the sphere in Problem 8.3 about an axis passing through the

center of the sphere and the center of the cavity.
8.6 Show that the moment of inertia of a solid uniform octant of a sphere of radius a is )ma2

about an axis along one of the straight edges. (Note: This is the same formula as that for a
solid sphere of the same radius.)

8.7 Show that the moments of inertia of a solid uniform rectangular parallelepiped, elliptic
cylinder, and ellipsoid are, respectively, (m/3)(a2 + 1,2), (m/4)(a2 + b2), and (m/5)(a2 +
where m is the mass, and 2a and 2b are the principal diameters of the solid at right angles
to the axis of rotation, the axis being through the center in each case.

8.8 Show that the period of a physical pendulum is equal to 2ir(d/g)"2, where d is the distance
between the point of suspension 0 and the center of oscillation 0'.

8.9 (a) An idealized simple pendulum consists of a particle of mass M suspended by a thin
massless rod of length a. Assume that an actual simple pendulum consists of a thin rod
of mass m attached to a spherical bob of mass M — in. If the radius of the spherical bob
is equal to b, and the length of the thin rod is equal to a — b, calculate the ratio of the
period of the actual simple pendulum to the idealized simple one.

(b) Calculateavalueforthisratioifm=lOg,M=lkg,a=1.27m,andb=5cm.
8.10 The period of a physical pendulum is 2 s. (Such a pendulum is called a "seconds" pendu-

lum.) The mass of the pendulum is 14, and its center of mass is 1 m below the axis of oscil-
lation. A particle of mass mis attached to the bottom of the pendulum, 1.3 m below the axis,
in line with the center of gravity. It is then found that the pendulum "loses" time at the
rate of 20 s/day. Find the ratio of in to M.

8.11 A circular hoop of radius a swings as a physical pendulum about a point on the circumfer-
ence. Find the period of oscillation for small amplitude if the axis of rotation is


